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CHAPTER 1 

Circuit Elements and Laws 
 

Voltage 
 

Energy is required for the movement of charge from one point to another. Let W 

Joules of energy be required to move positive charge Q columbs from a point a to 

point b in a circuit. We say that a voltage exists between the two points. The voltage 

V between two points may be defined in terms of energy that would be required if a 

charge were transferred from one point to the other. Thus, there can be a voltage 

between two points even if no charge is actually moving from one to the other. 

Voltage between a and b is given by 

 

V = 
W 

J / C 
Q 

 
 

 

Hence Electric Potential (V) = 
Worked are (W) in Joules 

Ch arge (Q)in columbs 

 

Current : 
 

An electric current is the movement of electric charges along a definite path. In case 

of a conductor the moving charges are electrons. 

 

The unit of current is the ampere. The ampere is defined as that current which when 

flowing in two infinitely long parallel conductors of negligible cross section, situated 1 

meter apart in Vacuum, produces between the conductors a force of 2 x 10-7 Newton per 

metre length. 

 

Power : Power is defined as the work done per unit time. If a field F newton acts for t 

seconds through a distance d metres along a straight line, work done W = Fxd N.m. or J. 

The power P, either generated or dissipated by the circuit element. 

P = 
w 
 

F x d 

t t 



 

Power can also be written as Power = 
Work 

time 
 

=  
Work 

Ch arge 
x 

Ch arge 



Time 

 

Voltage x Current 

 

P = V x I watt. 

 
Energy : Electric energy W is defined as the Power Consumed in a given time. Hence, if 

current IA flows in an element over a time period t second, when a voltage V volts is applied 

across it, the energy consumed is given by 

 

W = P x t = V x I x t J or watt. second. 

 
The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of 

energy is kilowatt. hour (Kwh) 

 

 Resistance : According to Ohm's law potential difference (V) across the ends of a conductor 

is proportional to the current (I) flowing through the conductor at a constant 

temperature. Mathematically Ohm's law is expressed as 

 

 

 

 
Or R = 

V I or V = R x I 

 
V 

where R is the proportionality constant and is designated as the conductor 

I 

resistance and has the unit of Ohm (). 

 
Conductance : Voltage is induced in a stationary conductor when placed in a varying 

magnetic field. The induced voltage (e) is proportional to the time rate of change of 

current, di/dt producing the magnetic field. 

Therefore e  
di

 
dt 

 

Or e = L 
di

 
dt 



e and i are both function of time. The proportionality constant L is called inductance. 

The Unit of inductance is Henery (H). 

 
Capacitance : A capacitor is a Physical device, which when polarized by an electric field 

by applying a suitable voltage across it, stores energy in the form of a charge separation. 

 

The ability of the capacitor to store charge is measured in terms of capacitance. 

Capacitence of a capacitor is defined as the charge stored per Volt applied. 
 

C = 
q 
 

Coulomb 
 Farad 

v Volt 

 

 Active and passive Branch : 
 

A branch is said to be active when it contains one or more energy sources. A passive 

branch does not contain an energy source. 

 

Branch : A branch is an element of the network having only two terminals. 

 
Bilateral and unilateral element : 

 

A bilateral element conducts equally well in either direction. Resistors and inductors 

are examples of bilateral   elements. When the current voltage relations are different  

for the two directions of current flow, the element is said to be unilateral. Diode is an 

unilateral element. 

 

Linear Elements : When the current and voltage relationship in an element can be 

simulated by a linear equation either algebraic, differential or integral type, the 

element is said to be linear element. 

 

Non Linear Elements : When the current and voltage relationship in an element can 

not be simulated by a linear equation, the element is said to be non linear elements. 

 

 Kirchhoff's Voltage Law (KVL) : 
 

The algebraic sum of Voltages (or voltage drops) in any closed path or loop is Zero. 



Application of KVL with series connected voltage source. 

 

 

Fig. 1.1 

 
V1 + V2 – IR1 – IR2 = 0 

 
= V1 + V2 = I (R1 + R2) 

 

I = 
V1  V2 

R1  R 2 

 

Application of KVL while voltage sources are connected in opposite polarity. 
 

 

Fig. 1.2 

V1 – IR1 – V2 – IR2 – IR3 = 0 

 V1 – V2 = IR1 + IR2 + IR3 
 

 V1 – V2 = I (R1 + IR2 + IR3) 



 

 I = 
V1  V2 

 

R1  R 2  R 3 

 

Kirchaoff's Current Law (KCL) : 
 

The algebraic sum of currents meeting at a junction or mode is zero. 

 

Fig. 1.3 

Considering five conductors, carrying currents I1, I2, I3, I4 and I5 meeting at a point O. 

Assuming the incoming currents to be positive and outgoing currents negative. 
 

I1 + (-I2) + I3 + (-I4) + I5 = 0 

I1 – I2 + I3 – I4 + I5 = 0 

I1 + I3 + I5 = I2 + I4 

Thus above Law can also be stated as the sum of currents flowing towards any 

junction in an electric circuit is equal to the sum of the currents flowing away from 

that junction. 
 

Voltage Division (Series Circuit) 
 

Considering a voltage source (E) with resistors R1 and R2 in series across it. 
 

 
Fig. 1.4 



 

 

 

 
Voltage drop across R1 = I. R1 = 

 

I = 

 
 

E.R1 

E R1 

 R 2 

R1  R 2 

 
Similarly voltage drop across R2 = I.R2 = 

 
 

E.R1 
 

R1  R 2 

 

 

 

 

 

Current Division : 

 
A parallel circuit acts as a current divider as the current divides in all branches in a 

parallel circuit. 

 

Fig. 1.5 

 
Fig. shown the current I has been divided into I1 and I2 in two parallel branches with 

resistances R1 and R2 while V is the voltage drop across R1 and R2. 

 

I1 = 
V 

R1 

and I2 
2 

 

Let R = Total resistance of the circuit. 
 

Hence 
1 
 = 1 

 
1 

R 

 

 R = 

R1 R 2 

 
R1R 2 

 

R1  R 2 

V 

R 



I = 
V 


R 

V 

R1R 2 

R1  R 2 

 
V(R1  R 2 ) 

R1R 2 

 

But = V = I1R1 = I2R2 
 

 R1R 2  


  I = I1R1 
 R1 


 R 2 


 I = 

I1 (R1  R 2 ) 

R 2 

 

 

Therefore 
 

 

Similarly it can be derived that 
 

I1 = 
IR2 

R1  R 2 

I2 = 
IR1 

R1  R 2 



CHAPTER 2 
 

 

Magnetic Circuits : 
 

Introduction : Magnetic flux lines always form closed loops. The closed path 

followed by the flux lines is called a magnetic circuit. Thus, a magnetic circuit 

provides a path for magnetic flux, just as an electric circuit provides a path for the 

flow of electric current. In general, the term magnetic circuit applies to any closed 

path in space, but in the   analysis of electro-mechanical and electronic system this 

term is specifically used for circuits containing a major portion of ferromagnetic 

materials. The study of magnetic circuit concepts is essential in the design, analysis 

and application of electromagnetic devices like transformers, rotating machines, 

electromagnetic relays etc. 

 

Magnetomotive Force (M.M.F) : 

 
Flux is produced round any current – carrying coil. In order to produce the required 

flux density, the coil should have the correct number of turns. The product of the 

current and the number of turns is defined as the coil magneto motive force (m.m.f). 

 

If I = Current through the coil (A) 

N = Number  of turns in the coil. 

Magnetomotive force = Current x turns 

So M.M.F = I X N 

The unit of M.M.F. is ampere–turn (AT) but it is taken as Ampere(A) since N 

has no dimensions. 

 

Magnetic Field Intensity 
 

Magnetic Field Intensity is defined as the magneto-motive force per unit length of the 

magnetic flux path. Its symbol is H. 



 
Magnetic field Intensity (H) = Magnetomotive force 

 
 

 

 
 

 H = 

 
F 
 

I .N . 
A/m

 

Mean length of the magnetic path 

l l 

 

Where l is the mean length of the magnetic circuit in meters. Magnetic field intensity is also 

called magnetic field strength or magnetizing force. 

Permeability :- 

Every substance possesses a certain power of conducting magnetic lines 

of force. For example, iron is better conductor for magnetic lines of force than 

air (vaccum) . Permeability of a material () is its conducting power for 

magnetic lines of force. It is the ratio of the flux density. (B) Produced in a 

material to the magnetic filed strength (H) i.e.  = B 
H

 

Reluctance : 

Reluctance (s) is akin to resistance (which limits the electric Current). 

Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a 

measure of the opposition offered by a magnetic circuit to the setting up of the 

flux. 

Reluctance is the ratio of magneto motive force to the flux. Thus 

 
S  Mmf 






Its unit is ampere turns per webber (or AT/wb) 

 
Permeance:- 

 
The reciprocal of reluctance is called the permeance (symbol A). 

 
Permeance (A) = 1/S wb/AT 

Turn T has no unit. 

Hence permeance is expressed in wb/A or Henerys(H). 



Electric Field versus Magentic Field. 

 
Similarities 

 

Electric Field 

1) Flow of Current (I) 

Magnetic Field 

1) Flow of flux () 
 

2) Emf is the cause of 

flow of current 

2) MMf is the cause of 

flow of flux 
 

3) Resistance offered 

to the flow of 

Current, is called 

resistance (R) 

Conductance 

3) Resistance offered to 

the flow of flux, is 

called reluctance (S) 

 
 

4) Permitivity() 
4) 

(  )  
1

 
R 

 

5) Current density is 

amperes per square 

meter. 

5) Flux density is number 

of lines per square 

meter. 
 

6) Current (I) - EMF 
R 

6) 
Flux ()  

MMF 

S 
 

Dissimilarities 

 

1) Current actually flows 

in an electric Circuit. 

1) Flux does not actually 

flow in a magnetic 

circuit. 
 

2) Energy is needed as 

long as current flows 

2) Energy is initially 

needed to create the 

magnetic flux, but not 

1 
S 



to maintain it. 
 

3) Conductance is 

constant and 

independent of current 

strength at a particular 

temperature. 

3) Permeability (or 

magnetic 

conductance ) 

depends on the total 

flux for a particular 

temperature. 

 

 

 

B.H. Curve : 

Place a piece of an unmagnetised iron bar AB within the field of a 

solenoid to magnetise it. The field H produced by the solenoid, is called 

magnetising field, whose value can be altered (increased or decreased) by 

changing (increasing or decreasing) the current through the solenoid. If we 

increase slowly the value of magnetic field (H) from zero to maximum value, 

the value of flux density (B) varies along 1 to 2 as shown in the figure and the 

magnetic materials (i.e iron bar) finally attains the maximum value of flux 

density (Bm) at point 2 and thus becomes magnetically saturated. 

 

Fig. 2.1 

Now if value of H is decreased slowly (by decreasing the current in the 

solenoid) the corresponding value of flux density (B) does not decreases along 

2-1 but decreases some what less rapidly along 2 to 3. Consequently during the 

reversal of magnetization, the value of B is not zero, but is '13' at H= 0. In other 



wards, during the period of removal of magnetization force (H), the iron bar is 

not completely demagnetized. 

 
In order to demagnetise the iron bar completely, we have to supply the 

demagnetisastion force (H) in the opposite direction (i.e. by reserving the 

direction of current in the solenoid). The value of B is reduced to zero at point 

4, when H='14'. This value of H required to clear off the residual magnetisation, 

is known as coercive force i.e. the tenacity with which the material holds to its 

magnetism. 

 
If after obtaining zero value of magnetism, the value of H is made more 

negative, the iron bar again reaches, finally a state of magnetic saturation at the 

point 5, which represents negative saturation. Now if the value of H is increased 

from negative saturation (= '45') to positive saturation ( = '12') a curve '5,6,7,2' 

is obtained. The closed loop "2,3,4,5,6,7,2" thus represents one complete cycle 

of magnetisation and is known as hysteresis loop. 



c d 

R4 

p 

R1 V3 R8 

a   b      e 

R2 

K h g f 

 

 
 

NETWORK ANALYSIS 
 

Different terms are defined below: 
 

1. Circuit: A circuit is a closed conducting path through which an electric current either 

. flow or is intended flow 
 

2. Network: A combination of various electric elements, connected in any manner. 

Whatsoever, is called an electric network 

3. Node: it is an equipotential point at which two or more circuit elements are joined. 
 

4. Junction: it is that point of a network where three or more circuit elements are joined. 
 

5. Branch: it is a part of a network which lies between junction points. 
 

6. Loop: It is a closed path in a circuit in which no element or node is accounted more than 

once. 

7. Mesh: It is a loop that contains no other loop within it. 
 

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of i) circuit elements ii) 

nodes iii) junction points iv) branches and v) meshes. 
 

R5 
 

 

 

 

 

R6 
 

 

 

 

 

 

 

 

 

V1 R7 
 

 

 

 

 

 

 

R3 R9 V2 



Solution: i) no. of circuit elements = 12 (9 resistors + 3 voltage sources) 
 

ii) no. of nodes =10 (a, b, c, d, e, f, g, h, k, p) 
 

iii) no. of junction points =3 (b, e, h) 
 

iv) no. of branches = 5 (bcde, be, bh, befgh, bakh) 
 

v) no. of meshes = 3 (abhk, bcde, befh) 
 

MESH ANALYSIS 
 

Mesh and nodal analysis are two basic important techniques used in finding solutions 

for a network. The suitability of either mesh or nodal analysis to a particular problem depends 

mainly on the number of voltage sources or current sources .If a network has a large number 

of voltage sources, it is useful to use mesh analysis; as this analysis requires that all the 

sources in a circuit be voltage sources. Therefore, if there are any current sources in a circuit  

they are to be converted into equivalent voltage sources,if, on the other hand, the network has 

more current sources,nodal analysis is more useful. 

Mesh analysis is applicable only for planar networks. For non-planar circuits mesh 

analysis is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface 

without crossovers. A non-planar circuit cannot be drawn on a plane surface without a 

crossover. 

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a 

planar circuit which looks like a non-planar circuit. It has already been discussed that a loop 

is a closed path. A mesh is defined as a loop which does not contain any other loops within it. 

To apply mesh analysis, our first step is to check whether the circuit is planar or not and the 

second is to select mesh currents. Finally, writing Kirchhoff‘s voltage law equations in terms 

of unknowns and solving them leads to the final solution. 

 
 

 
 

 

(a) (b)  (c) 

Figure 3.2 

Observation of the Fig.3.2 indicates that there are two loops abefa,and bcdeb in the 

network .Let us assume loop currents I1 and I2with directions as indicated in the figure. 



a b c 

R2 

R4 

± I1 

f e d 

Considering the loop abefa alone, we observe that current I1 is passing through R1, and (I1-I2) 

is passing through R2. By applying Kirchhoff’s voltage law, we can write 

Vs. =I1R1+R2(I1-I2) (3.1) 

 

 

 
 

R1 R3 
 

 
 

Vs 

 

 

 

 
 

 

Figure 3.3 
 

Similarly, if we consider the second mesh bcdeb, the current I2 is passing through R3 

and R4, and (I2 – I1) is passing through R2. By applying Kirchhoff’s voltage law around the 

second mesh, we have 
 

R2 (I2-I1) + R3I2 +R4I2 = 0 (3.2) 

 

By rearranging the above equations,the corresponding mesh current equations are 

I1 (R1+R2) - I2R2 =Vs. 

-I1R2 +(R2+R3+R4) I2=0 (3.3) 

 

 
By solving the above equations, we can find the currents I1 and I2,.If we observe 

Fig.3.3, the circuit consists of five branches and four nodes, including the reference node.The 

number of mesh currents is equal to the number of mesh equations. 

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of 

mesh current would be 5-(4-1)=2. 

I2 



In general we have B number of branches and N number of nodes including the 

reference node than number of linearly independent mesh equations M=B-(N-1). 

 

 

 

 

 

 

 

Example 3.2 Write the mesh 
 

 
 

current equations in the circuit shown 10 V 
 
 
 

in fig 3.4 and determine the currents. 

 

 

Figure 3.4 
 

Solution: Assume two mesh currents in the direction as indicated in fig. 

3.5. The mesh current equations are 

 

 

5 Ω 
 

 
 

10 V I1 

2 Ω 

I2 10 Ω 

50V 
 

 
 

Figure 3.5 
 

5I1 + 2(I1-I2) = 10 
 

1012 + 2(12-11) + 50= 0 (3.4) 

We can rearrange the above equations as 

7I1 -2I2 =10 

-2I1+12I2 = -50 (3.5) 

By solving the above equations, we have I1= 0.25 A, and I2 = -4.125 

5Ω 10Ω 

2Ω 

50v 



Here the current in the second mesh I2, is negative; that is the actual current I2 flows opposite 

to the assumed direction of current in the circuit of fig .3.5. 

Example 3.3 Determine the mesh current I1 in the circuit shown in fig.3.6. 

 

 
10 Ω 2 Ω    

 

 

 

5 Ω I2 + 10 V 
 

I1 1 Ω 
 

50 V ‐ 
 

3 Ω 5 V 
 

I3 
 
 
 

Figure 3.6 

 

 

Solution: From the circuit, we can from the following three mesh equations 

10I1+5(I1+I2) +3(I1-I3) = 50 (3.6) 

2I2 +5(I2+I1) +1(I2+I3) = 10 (3.7) 

3(I3-I1) +1(I3+I2) = -5 (3.8) 

Rearranging the above equations we get 
 

18I1+5I2-3I3=50 (3.9) 

5I1+8I2 + I3=10 (3.10) 

-3I1 + I2+ 4I3=-5 (3.11) 

According to the Cramer’s rule 



I1 R2 I2 V2 I3 



 





 







5 










5 8 




 50 5  3

 
10 8 

I1= 
 5 1 

1 



4  
= 

1175 
 

 

 18 5  3 356 

 5 8 1 

 3 1 4 






Or I1= 3.3 A Similarly, 
 

 18 50  3

 
10 1 




I = 
 3  5 4  

= 
 355 

2 
 

18 5 
 5 8 
 
 3 1 

 3 



1 


4 

356 

 

Or I2=-0.997A (3.12) 
 

 18 5 50 

 10 

I = 
 3 1  5 

 
525 

3 
 

18 5  3
 

356 
 5 8 1 

 3 1 4 






Or I3=1.47A (3.13) 

I1=3.3A, I2=-0.997A, I3=1.47A 

MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be written by 

inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7 

 

The loop equation are I1R1+ R2(I1-I2) =V1 R1 R3 

R4 
 

 

 

 

 

V1 R5 
 

 

 

 

 

Figure 3.7 



 

R2( I2-I1)+I2R3= -V2 3.14 

R4I3+R5I3=V2 3.15 

Reordering the above equations, we have 

(R1+R2)I1-R2I2=V1 3.16 

-R2I1+(R2+R3)I2=-V2 3.17 

(R4+R5)I3=V2 3.18 

The general mesh equations for three mesh resistive network can be written as 

R11I1  R12I2  R13I3= Va 3.19 

 R21I1+R22I2  R23I3= Vb 3.20 

 R31I1  R32I2+R33I3= Vc 3.21 

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 3.21 

respectively, the following observations can be taken into account. 

1. The self-resistance in each mesh 

2. The mutual resistances between all pairs of meshes and 

3. The algebraic sum of the voltages in each mesh. 

The self-resistance of loop 1, R11=R1+R2, is the sum of the resistances through which I1 

passes. 

The mutual resistance of loop 1, R12= -R2, is the sum of the resistances common to loop 

currents I1 and I2. If the directions of the currents passing through the common resistances are 

the same, the mutual resistance will have a positive sign; and if the directions of the currents 

passing through the common resistance are opposite then the mutual resistance will have a 

negative sign. 

Va=V1 is the voltage which drives the loop 1. Here the positive sign is used if 

the direction of the currents is the same as the direction of the source. If the current 

direction is opposite to the direction of the source, then the negative sign is used. 

Similarly R22=R2+R3 and R33=R4+R5 are the self-resistances of loops 2 and 3 

respectively. The mutual resistances R13=0, R21= -R2, R23=0, R31=0, R32=0 are the 

sums of the resistances common to the mesh currents indicated in their subscripts. 

Vb= -V2, Vc= V2 are the sum of the voltages driving their respective loops. 



1 

3Ω 
2Ω 
I2 

+ 

I1 

5V 

_ + 

 

I3 

6Ω 

- 

+  -20V  

 

 

 

 

 

Example 3.4 write the mesh equation for the circuit shown in fig. 3.8 
 

 

 

 

 

 

5Ω 
 
 
 
 

10V - 4Ω 
 
 
 
 
 
 

 

Figure 3.8 
 

Solution : the general equation for three mesh equation are 

R11I1  R12I2  R13I3=Va (3.22) 

 R21I1+R22I2  R23I3=Vb (3.23) 

 R31I1  R32I2+R33I3=Vc (3.24) 

Consider equation 3.22 
 

R11=self resistance of loop 1=(1Ω+ 3 Ω +6 Ω) =10 Ω 

R12= the mutual resistance common to loop 1 and loop 2 = -3 Ω 

Here the negative sign indicates that the currents are in opposite direction . 

R13= the mutual resistance common to loop 1 & 3= -6 Ω 

Va= +10 V, the voltage the driving the loop 1. 

Here he positive sign indicates the loop current I1 is in the same direction as the 

source element. 

Therefore equation 3.22 can be written as 



10 I1- 3I2-6I3= 10 V (3.25) 

Consider Eq. 3.23 
 

R21= the mutual resistance common to loop 1 and loop 2 = -3 Ω 

R22= self resistance of loop 2=(3Ω+ 2 Ω +5 Ω) =10 Ω 

R23=0, there is no common resistance between loop 2 and 3. 

Vb = -5 V, the voltage driving the loop 2. 

Therefore Eq. 3.23 can be written as 

-3I1 + 10I2= -5V (3.26) 

Consider Eq. 3.24 

R31= the mutual resistance common to loop 1 and loop 3 = -6 Ω 

R32= the mutual resistance common to loop 3 and loop 2 = 0 

R33= self resistance of loop 3=(6Ω+ 4 Ω) =10 Ω 

Vc= the algebraic sum of the voltage driving loop 3 

=(5 V+20V)=25 V (3.27) 

Therefore, Eq3.24can be written as -6I1 + 10I3= 25V 

-6I1-3I2-6I3= 10V 

-3I1+10I2=-5V 

-6I1+10I3=25V 

 SUPERMESH ANALYSIS 
 

Suppose any of the branches in the network has a current source, then it is slightly difficult to 

apply mesh analysis straight forward because first we should assume an unknown voltage 

across the current source, writing mesh equation as before, and then relate the source current 

to the assigned mesh currents. This is generally a difficult approach. On way to overcome this 

difficulty is by applying the supermesh technique. Here we have to choose the kind of 

supermesh. A supermesh is constituted by two adjacent loops that have a common current 

source. As an example, consider the network shown in the figure 3.9. 

 

 

 

 

 

 

 

R4 

  R2  

+ V I1 I2 R3 I3 

- 

1 I 2 3 

Figure 3.9 



a b I I 

I 10 Ω I2 

2 A f 

+ I1 3 Ω 

I3 

5Ω 

d 

Here the current source I is in the common boundary for the two meshes 1 and 2. This current 

source creates a supermesh, which is nothing but a combination of meshes 1 and 2. 

R1I1 + R3(I2-I3)=V 

Or R1I1 + R3I2 - R4I3= V 

Considering mesh 3, we have 

R3(I3-I2)+ R4I3=0 

Finally the current I from current source is equal to the difference between two mesh currents 

i.e. 

I1-I2=I 

we have thus formed three mesh equations which we can solve for the three unknown 

currents in the network. 

Example 3.5. Determine the current in the 5Ω resistor in the network given in Fig. 3.10 
 

 

 

e 
 

2Ω 
 

 
 

50 v 1 Ω 
 
 

 

 

Figure 3.10 
 

Solution: - From the first mesh, i.e. abcda, we have 
 

50 = 10(I1-I2) + 5(I1-I3) 

Or 15I1-10I2 -5I3 =50 (3.28) 

 

From the second and third meshes. we can form a super mesh 
 

10(I2-I1)+2I2 +I3+5(I3-I1)=0 

Or -15I1+12I2 +6I3 =0 (3.29) 



The current source is equal to the difference between II and III mesh currents 

i.e. I2-I3 = 2A (3.30) 

Solving 3.28.,3.29 and 3.30. we have 
 

I1 =19.99A,I2= 17.33 A, and I3 = 15.33 A 

The current in the 5Ω resistor =I1 -I3 

=19.99 -15.33=4.66A 
 

The current in the 5Ω resistor is 4.66A. 
 

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the 

currents, I1, I2 and I3. 

 

 

 

 
 

 

 

 

 

1Ω 
 

 

 

 

 

 

Figure 3.11 

 

 

Solution ; In fig 3.11, the current source lies on the perimeter of the circuit, and the 

first mesh is ignored. Kirchhoff‘s voltage law is applied only for second and third meshes . 

From the second mesh, we have 

3(I2-I1)+2(I2-I3)+10 =0 

Or -3I1 +5I2-2I3 = -10 (3.31) 

 

From the third mesh, we have 

I3 + 2 (I3 -I2) =10 

Or -2I2+3I3 =10 (3.32) 

10V 

I1 

I2 I3 

10 A 3Ω 

2Ω 

I II III 



R2 R4 

R1 R3 

1 2 

R1 

From the first mesh, I1 =10A (3.33) 

From the abovethree equations, we get 

I1=10A, I2 =7.27, I3 =8.18A 

 

 
 NODALANALYSIS 

 

In the chapter I we discussed simple circuits containing only two nodes, including the 

reference node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum 

node, then it is possible to write N -1nodal equations by assuming N-1 node voltages. For 

example,a10 node circuit requires nine unknown voltages and nine equations. Each node in a circuit 

can be assigned a number or a letter. The node voltage is the voltage of a given node with respect to 

one particular node, called the reference node, which we assume at zero potential. In the circuit shown 

in fig. 3.12, node 3 is assumed as the   Reference node. The voltage at node 1 is the voltage at that 

node with respect to node 3. Similarly, the voltage at node 2 is the voltage at that node with respect to 

node 3. Applying Kirchhoff’s current law at node 1, the current entering is the current leaving (See 

Fig.3.13) 
 

1 2 
 

 

 

 

 

 

I1 R5 
 

 

 

 

 

3 Figure 3.12 

R2 

 
 

I1 
 

 

 

 

 
 

 

Figure 3.13 

I1= V1/R1 + (V1-V2)/R2 



10Ω 2Ω 

3Ω 

5Ω 5A 1Ω 

Where V1 and V2 are the voltages at node 1 and 2, respectively. Similarly, at node 

2.the current entering is equal to the current leaving as shown in fig. 3.14 

 

R2 R4 
 

 
 

R3 R5 

Figure 3.14 
 

 

 
 

  

 

(V2-V1)/R2 + V2/R3 + V2/(R4+R5) =0 

Rearranging the above equations, we have 

V1[1/R1+1/R2]-V2(1/R2)= I1 

-V1(1/R2) + V2[1/R2+1/R3+1/(R4+R5)]=0 

From the above equations we can find the voltages at each node. 

Example 3.7 Determine the voltages at each node for the circuit shown in fig 3.15 

3Ω 
 
 

 

 

 

 

 

 

10 V 6Ω 
 

 

Figure 3.15 

 

Solution : At node 1, assuming that all currents are leaving, we have 

(V1-10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0 

Or V1[1/10 +1/3 +1/5 + 1/3 ] - V2[ 1/3 + 1/3 ] = 1 

0.96V1-0.66V2 = 1 (3.36) 

At node 2, assuming that all currents are leaving except the current from current source, we 

have 

(V2-V1)/3+ (V2-V1)/3+ (V2-V3)/2 = 5 

-V1[2/3]+V2[1/3 +1/3 + 1/2]-V3(1/2) =5 

-0.66V1+1.16V2-0.5V3= 5 (3.37) 
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


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0 
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0 
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


0 

At node 3 assuming all currents are leaving, we have 

(V3-V2)/2 + V3/1 + V3/6 =0 

-0.5V2 + 1.66V3=0 (3.38) 

Applying Cramer’s rule we get 
 

 1 



V = 
 0

 

 0.66 

1.16 

 0.5 

0 

 0.5 

1.66 



 

= 
7.154 

 8.06 
 

 

1 
 

0.96  0.66 0 
 0.887 

 0.66 1.16  0.5
 

 0.5 1.66 



Similarly, 

 0.96 1 
 

 0.66 5 

V = 
 0 0 

0 

 0.5 

1.66 




 

= 
9.06 

 

 
  10.2 
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0.96  0.66 
 

 

0 
 0.887 

 0.66 1.16  0.5
 

 0.5 1.66 



 0.96 
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 0.66 

V = 
 0

 

 0.66 

1.16 

 0.5 

1 

5 



0  







2.73 

 

 

 
 3.07 

3 
 

0.96  0.66 
 

 

0 
 0.887 

 0.66 1.16  0.5
 

 0.5 1.66 





NODAL EQUATIONS BY INSPECTION METHOD The nodal equations for a general planar network can also be written by inspection 

without going through the detailed steps. Consider a three node resistive network, including the reference node, as shown in fig 3.16 
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Figure 3.16 

a b 

   

R2 R4    
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In fig. 3.16 the points a and b are the actual nodes and c is the reference node. 

Now consider the nodes a and b separately as shown in fig 3.17(a) and (b) 

 

R1   Va R3 R3 Vb R5 

    Vb Va 
 

 

V1 
 

 

 

 

 

 
 

Figure 3.17 
 

In fig 3.17 (a), according to Kirchhoff’s current law we have 

I1+I2+I3=0 

(Va-V1)/R1 +Va/R2+ (Va-Vb)/R3= 0 

 

 

 
(3.39) 

 

In fig 3.17 (b) , if we apply Kirchhoff’s current law  

I4+ I5= I3 

(Vb-Va)/R3 + Vb/R4+(Vb-V2)/R5=0 

 
 

(3.40) 

Rearranging the above equations we get 
 

(1/R1+1/R2+1/R3)Va-(1/R3)Vb=(1/R1)V1 (3.41) 

(-1/R3)Va+ (1/R3+1/R4+1/R5)Vb=V2/R5 (3.42) 

In general, the above equation can be written as  

GaaVa + GabVb=I1 
 

(3.43) 

GbaVa + GbbVb=I2 
 (3.44) 

By comparing Eqs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node 

a, Gaa=(1/R1 + 1/R2 + 1/R3) is the sum of the conductances connected to node a. Similarly, 

Gbb= (1/R3 + 1/R4 +1/R5) is the sum of the conductances connected to node b. Gab=(-1/R3) is 

the sum of the mutual conductances connected to node a and node b. Here all the mutual 

conductances have negative signs. Similarly, Gba= (-1/R3) is also a mutual conductance 

connected between nodes b and a. I1 and I2 are the sum of the source currents at node a and 

node b, respectively. The current which drives into the node has positive sign, while the 

current that drives away from the node has negative sign. 

I1 I5 I3 

R2 

(a) 

I3 

R4 I4 

I5 

V2 

(b) 



 

 

 

 

 

 

 

 

Example 3.8 for the circuit shown in the figure 3.18 write the node equations by the 

inspection method. 
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Fig 3.18 
 

Solution:- 

 

The general equations are 

 

GaaVa+GabVb=I1 (3.45) 

 

GbaVa + GbbVb=I2 (3.46) 

Consider equation 3.45 

 
Gaa=(1+ 1/2 +1/3) mho. The self conductance at node a is the sum of the conductances 

connected to node a. 

 

Gbb = (1/6 + 1/5 + 1/3) mho the self conductance at node b is the sum of conductances 

connected to node b. 

 

Gab =-(1/3) mho, the mutual conductances between nodes a and b is the sum of the 

conductances connected between node a and b. 

 

Similarly Gba = -(1/3), the sum of the mutual conductances between nodes b and a. 

I1=10/1 =10 A, the source current at node a, 

a b 

1 Ω 3Ω 2Ω 

5Ω 

10V 2Ω 

2 V 5 V 



1 2 3 

R2 VX 

R1 R3 R4 

VY 

I2=(2/5 + 5/6) = 1.23A, the source current at node b. 

Therefore, the nodal equations are 

1.83Va-0.33Vb=10 (3.47) 

 
-0.33Va+0.7Vb= 1.23 (3.48) 

 SUPERNODE ANALYSIS 

 

Suppose any of the branches in the network has a voltage source, then it is slightly difficult to 

apply nodal analysis. One way to overcome this difficulty is to apply the supernode 

technique. In this method, the two adjacent nodes that are connected by a voltage source are 

reduced to a single node and then the equations are formed by applying Kirchhoff’s current  

law as usual. This is explained with the help of fig. 3.19 
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FIG 3.19 

 

 

 

 

It is clear from the fig.3.19, that node 4 is the reference node. Applying Kirchhoff’s current  

law at node 1, we get 

 

I=(V1/R1 ) + (V1-V2)/R2 

 

Due to the presence of voltage source Vχ in between nodes 2 and 3 , it is slightly 

difficult to find out the current. The supernode technique can be conveniently applied in this 

case. 

Accordingly, we can write the combined equation for nodes 2 and 3 as under. 



(V2-V1)/R2 + V2/R3 + (V3-Vy)/R4 +V3/R5= 0 

 

The other equation is 

V2-V3 =Vx 

From the above three equations, we can find the three unknown voltages. 
 

 

 

 
 

Example 3.9 Determine the current in the 5 Ω resistor for the circuit shown in fig. 

3.20 

2Ω 
 

 

 

 
 

2Ω 
 

 
 

fig. 3.20 
 

 

 

 

 

Solution. At node 1 
 

10= V1/3 + (V1-V2)/2 

Or V1[1/3 +1/2]-(V2/2)-10=0 

0.83V1-0.5V2-10 = 0 (3.49) 

 

At node 2 and 3, the supernode equation is 

 
(V2-V1)/2 + V2/1 + (V3-10)/5 +V3/2 = 0 

 
Or –V1/2 +V2[(1/2)+1]+ V3[1/5 + 1/2]=2 

 
Or -0.5V1+ 1.5V2+0.7V3-2=0 (2.50) 

 
The voltage between nodes 2 and 3 is given by 

 
V2-V3=20 (3.51) 

V1 V2 +_--- - V3 

20 V 

1Ω 5Ω 

10 A3Ω 

10 V 



   a  

R1 

The current in 5Ω resistor I5 =(V3-10)/5 

Solving equation 3.49, 3.50 and 3.51, we obtain 

V3 =-8.42 V 
 

 Currents I5=(-8.42-10)/5 = -3.68 A (current towards node 3 ) i.e the current 

flows towards node 3. 

 

 

 

 

 

 SOURCE TRANSFORMATION TECHNIQUE 

In solving networks to find solutions one may have to deal with energy sources. It has 

already been discussed in chapter 1 that basically, energy sources are either voltage sources 

or current sources. Sometimes it is necessary to convert a voltage source to a current source 

or vice-versa. Any practical voltage source consists of an ideal voltage source in series with 

an internal resistance. Similarly, a practical current source consists of an ideal current source 

in parallel with an internal resistance as shown in figure3.21. Rv and Ri represent the internal 

resistances of the voltage source Vs , and current source Is ,respectively. 
 

 

RV 

     a 
 
 

 

 

VS IS 
 

 

 

 

 
 

b fig. 3.21 b 

 

 
Any source, be it a current source or a voltage source, drives current through its load 

resistance, and the magnitude of the current depends on the value of the load resistance. Fig 

3.22 represents a practical voltage source and a practical current source connected to the 

same load resistance RL. 
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(a) (b) 

Figure 3.22 

From fig 3.22 (a) the load voltage can be calculated by using Kirchhoff’s voltage law as 

Vab=Vs-ILRv 

The open circuit voltage Voc=Vs 

The short circuit current Isc= 
Vs

 

Rv 

 

from fig 3.22 (b) 

 

IL=Is-I=Is-(Vab/R1) 

 

The open circuit voltage Voc= IsR1 

The short circuit current Isc=Is 

The above two sources are said to be equal, if they produce equal amounts of current 

and voltage when they are connected to identical load resistances. Therefore, by equating the 

open circuit votages and short circuit currents of the above two sources we obtain 

Voc=IsR1=Vs 

Isc=Is=Vs/Rv 

It follows that 

R1=Rv=Rs; Vs=IsRs 

where Rs is the internal resistance of the voltage or current source. Therefore, any 

practical voltage source, having an ideal voltage Vs and internal series resistance Rs can be 

replaced by a current source Is=Vs/Rs in parallel with an internal resistance Rs. The reverse 

  a  

VS IL 



tansformation is also possible. Thus, a practical current source in parallel with an internal 

resistance Rs can be replaced by a voltage source Vs=IsRs in series with an internal resistance 

Rs. 

Example 3.10 Determine the equivalent voltage source for the current source shown in fig 

3.23 
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B 
 

Figure 3.23 
 

Solution: The voltage across terminals A and B is equal to 25 V. since the internal resistance 

for the current source is 5 Ω, the internal resistance of the voltage source is also 5 Ω. The 

equivalent voltage source is shown in fig. 3.24. 
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Fig 3.24 
 

Example 3.11 Determine the equivalent current source for the voltage source shown in fig. 3.25 

 

 

 

 

 

50 V 

5Ω 
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A 

30 Ω 



30Ω 

 

 

 

Solution : the short circuit current at terminals A and B is equal to 

I= 50/30 = 1.66 A 

A 
 

1.66 A 
 

 
 

B 
 

Fig 3.26 
 

Since the internal resistance for the voltage source is 30Ω, the internal resistance of 

the current source is also 30 Ω. The equivalent current source is shown in fig. 3.26. 



 

 

 

NETWORK THEOREMS 

Before start the theorem we should know the basic terms of the network. 

Circuit: It is the combination of electrical elements through which current 

passes is called circuit. 

Network: It is the combination of circuits and elements is called network. 

Unilateral :It is the circuit whose parameter and characteristics change with 

change in the direction of the supply application. 

Bilateral: It is the circuit whose parameter and characteristics do not change 

with the supply in either side of the network. 

Node: It is the inter connection point of two or more than two elements is 

called node. 

Branch: It is the interconnection point of three or more than three elements is 

called branch. 

Loop: It is a complete closed path in a circuit and no element or node is taken 

more than once. 

Super-Position Theorem : 

Statement :'' It states that in a network of linear resistances containing more than 

one source the current which flows at any point is the sum of all the currents 

which would flow at that point if each source were considered separately   and 

all other sources replaced for time being leaving its internal resistances if any''. 

Explanation : 

Considering E1 source 

 

Step 1. 

R2&r are in series and parallel with R3 and again series with R1 



(R2+r2) || R3 

 
(R2  r2 )R3  m 
R2  r2  R3 

(say) 

Rt1  m  R1  r1 

I  
E1

 
 

1 Rt 

I 



1 

I1  R3 
 

R2  r2  R3 

I    
I1 (R2  r2 ) 

 

R2  r2  R3 

Step – 2 

Considering E2 source,R1&r2 are series and R3 parallel and R2 in series 

 
(R1+r1) || R3 

 
(R1  r1 )R3  n 
R1  r1  R3 

(say) 

Rt2  n  R2  r2 

I  
E2

 
 

2 Rt 

I 
/ 
 

I21 (R1  r1 ) 
 3 R  r  R 

 
I / 

1 1 3 

I2  R3 
 1 R  r  R 

1 1 3 

Step – 3 
Current in R1 branch = I  I / 

1 1 

Current in R2 branch = I  I / 
2 2 

Current in R3 branch = I  I / 
3 3 

The direction of the branch current will be in the direction of the greater value 

current. 

Thevenin’s Theorem : 

The current flowing through the load resistance R1 connected across any two 

terminals A and B of a linear active bilateral network is given by 

IL 
Vth 

R  R  
Voc 

R  R 
th L i L 

Where Vth = Voc is the open. circuit voltage across A and B terminal when RL is 

removed. 

Ri =Rth is the internal resistances of the network as viewed back into the open 

circuit network from terminals A & B with all sources replaced by their internal 

resistances if any. 

2 

3 

2 



Explanation : 

 

Step – 1 for finding Voc 

Remove RL temporarily to find Voc. 

 

I  
E

 

R1  R2  r 

Voc  IR2 

Step – 2 finding Rth 

Remove all the sources leaving their internal resistances if any and viewed from 

open circuit side to find out Ri or Rth. 

 

 
 

 

 
Ri  (R1  r) || R2 

R  
(R1  r)R2 

 

R1  r  R2 

Step – 3 

Connect internal resistances and Thevenin’s voltage in series with load 

resistance RL. 

i 



Where Rth=thevenin resistance 

Vth=thevenin voltage 

Ith=thevenin current 

Ri  (R1  r) || R2 

I L 
Vth 

Rth  RL 

 
Voc 

Ri  RL 

Example 01- Applying thevenin theorem find the following from given 

figure 

(i) the Current in the load resistance RL of 15 



Solution : (i) Finding Voc 

 Remove 15 resistance and find the Voltage across A and B 
 

Voc is the voltage across 12  resister 

Voc = 
  2412 

 18V 
12  3 1 

 

(ii) Finding Rth 

Rth is calculated from the terminal A & B into the network. 
The 1  resister and 3  in are series and then 

parallel 
 

Rth = 3+1 // 12 

 

 
4 12 

 3 
16 



 
 

 

 

 

 
 

(iii) Ith =   
Voc 

RL  R 
 

18 
 1 A. 

15  3 

Example 02: Determine the current in 1Ω resistor across AB of the network 

shown in fig(a) using thevenin theorem. 

Solution:The circuirt can be redrawn as in fig (b). 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

fig (a),(b),(c),(d) respectively 

Step-1 remove the 1Ω resistor and keeping open circuit .The current source is 

converted to the equivalent voltage source as shown in fig (c) 

Step-02 for finding the Vth we'll apply KVL law in fig (c) 

then 3-(3+2)x-1=0 

x=0.4A 

Vth=VAB =3-3*0.4=1.8V 

Step03-for finding the Rth,all sources are set be zero 

Rth=2//3=(2*3)/(2+3)=1.2Ω 

Step04- Then current Ith=1.8/(12.1+1)=0.82A 



Example03: The four arms of a wheatstone bridge have the following 

resistances . 

AB=100Ω,BC=10Ω,CD=4Ω,DA=50Ω.AA galvanometer of 20Ω 

resistance is connected across BD. Use thevenin theorem to compute the current 

through the galvanometer when the potential difference10V is maintained 

across AC. 

 

 

 

 

 

 

 
 

 
Solution: 

  

step 01- Galvanometer is removed. 

step02-finding the Vth between B&D.ABC is a potential divider on which a 

voltage drop of 10vtakes place. 

Potential of B w.r.t C=10*10/110=0.909V 

Potential of D w.r.t C=10*4/54=.741V 

then, 

p.d between B&D is Vth=0.909-.741=0.168V 

Step03-finding Rth 

remove all sources to zero keeping their internal resistances. 



Rth =RBD=10//100+50//4=12.79Ω 

Step04; 

lastly Ith=Vth/Rth+RL=0.168/(12.79+20)=5mA 

 

 
 

 

 
 

Norton's Theorem 

Statement : In any two terminal active network containing voltage sources and 

resistances when viewed from its output terminals in equivalent to a constant 

current source and a parallel resistance. The constant current source is equal to 

the current which would flow in a short circuit placed across the terminals and 

parallel resistance is the resistance of the network when viewed from the open 

circuit side after replacing their internal resistances and removing all the 

sources. 

OR 

In any two terminal active network the current flowing through the load 

resistance RL is given by 

I  
I sc  Ri 

 

Ri  RL 

Where Ri is the internal resistance of the network as viewed from the open ckt 

side A & B with all sources being replaced by leaving their internal resistances 

if any. 

Isc is the short ckt current between the two terminals of the load resistance 

when it is shorted 

Explanation : 

 

 
Step – 1 

A &B are shorted by a thick copper wire to find out Isc 
Isc  E /(R1  r) 

L 



 
 

Isc = E / (R1 +r) 

Step – 2 

Remove all the source leaving its internal resistance if any and viewed from 

open circuit side A and B into the network to find Ri . 

 

 

Ri  (R1  r) || R2 

Ri  (R1  r)R2 /(R1  r  R2 ) 
 

 

 

 

 

 

 

 

 

 
 

 

Step – 3 

 

Connect Isc & Ri in parallel with RL 

I  
I sc  Ri 

 

Ri  RL 

Example 01:Using norton's theorem find the current that would flow through 

the resistor R2 whenit takes the values of 12Ω,24Ω&36Ω respectively in the fig 

shown below. 

Solution: 

L 



L L 

 

Step 01-remove the load resistance by making short circuit. now terminal AB 

short circuited. 

Step 02-Finding the short circuit current Isc 

First the current due to E1 is =120/40=3A,and due to E2 is 180/60=3A. 

then Isc=3+3=6A 

Step 03-finding resistance RN 

It is calculated by by open circuit the load resistance and viewed from open 

circuit and into the network and all sources are taken zero. 

RN=40//60=(40*60)/(40+60)=24Ω 

i) when RL=12Ω, IL=6*24/(24+36)=4A 

ii) when RL=24Ω,IL=6/2=3A 

iii) when RL=36Ω,IL=6*24/(24+36)=2.4A 

 

 

 
 

Maximum PowerTransfer Theorem 

Statement : A resistive load will abstract maximum power from a network 

when the load resistance is equal to the resistance of the network as viewed 

from the output terminals(Open circuit) with all sources removed leaving their 

internal resistances if any 

Proof : 

I L 
Vth 

 

Ri  RL 

Power delivered to the load 

resistance is given by 

P  I 2R 
 V 

2

 

  th  RL 

 Ri  RL 

L 



2 

L 

V 2 R 
 th L  

(Ri  RL ) 

Power delivered to the load resistance RL will be maximum 

When 
dPL   0

 

dRL 

d    V 2R 

 
 th     L 

  0 
 dR (R  R )2 

L  i L 
V 2 (R  R )2  V 2R  2(R  R ) 

   th i L th     L i L      0 

(Ri  RL ) 
 V 2 (R  R )2  V 2 R  2(R  R )  0 

th i L th  L i L 

 V 2 (R  R )2  2V 2R (R  R )  0 
th i L th  L i L 

 V 2 (R  R )2  2V 2 R  (R  R ) 
th i L th  L i L 

 Ri  RL  2RL 

 Ri  2RL  RL 

 Ri  RL 

 V 2 
(PL ) max  

 th 
RL 

(Ri  RL ) 
 V 2    

  th     RL
 

 4RL 

V 2 

    th      RL
 

4R 2 

 
 

 

 

 

 
 

MILLIMAN’S THEOREM : 

According to Millimans Theorem number of sources can be converted 

into a single source with a internal resistance connected in series to it,if the 

sources are in parallel connection. 

According to the Milliman’s theorem the equivalent voltage source 
 

E  
1 
 E  

1 
 E  

1 
 .. 

   

1 
R 

2 
R 

3 
R

 
E '  1 2 3  

1 
 

1 

R1 R2 

 
1 
 ..... 

R3 

(PL ) max   th  
V 2 

4R 2 L 

2 

4 

2 



 
E1G1  E2G2  E3G3  .. 

G1  G2  G3  ... 
E1  

E2  
E3  .. 

 
R1 R2 R3 

 

G1  G2  G3  .... 

 
I1  I2  I3  .. 

G1  G2  G3  ... 

Example – Calculate the current across 5Ω resistor by using Milliman’s Thm. 

Only 

Solution :- Given , 

R1 = 2Ω, R2 = 6 Ω , R3 = 4 Ω, RL = 5 Ω 

E1= 6v, E2 = 12v 

the resistance R2 is not calculated because there is no voltage source 
E1  

E2  
E3 

Vol= E  
R1

 

1 



R1 

R2 R3 

1 
 

1 
.
 

R2 R3 

6 
 0  

12 

 2 4  
1 
 

1 
 

1 
.
 

2 6 4 

 
3  0  3 

6  2  3 
 

 

12 

 
6 
 2 

11 
 6.54v 

R1 
1 

1 
 

1 
 

1 

R1 R2 R3 

 
1 

 
12 

 1.09.2 
11 11 

 

12 

IL 
Voc 

 
 

1.09  5 
 

6.54 

1.09  5 
 1.07Amp. 

COMPENSATION THEOREM : 

Statement : 

It’s states that in a circuit any resistance ‘R” in a branch of network in 

which a current ‘I’ is flowing can be replaced. For the purposes of calculations 

by a voltage source = - IR 

OR 



If the resistance of any branch of network is changed from R to R +4R 

where the current flowing originaly is i. The change current at any other place 

in the network may be calculated by assuming that one e.m.f – I  R has been 

injected into the modified branch. While all other sources have their e.m.f. 

suppressed and ‘R’ represented by their internal resistances only. 

Exp – (01) 

Calculate the values of new currents in the network illustrated , when the 

resistor R3 is increased by 30%. 

Solution :- In the given circuit , the values of various branch currents are 
I1  75/(5 10)  5A 

I 3   I 2  
5  20 

40 
 2 .5 Amp . 

Now the value of R3, when it increase 30% 
R3  20  (20  0.3)  26

IR  26  20  6

V  IR 

 
 2.5  6 

 15V 

5 || 20  
5 20 

 
100 

 4
 

5  20 25 

I3 ' 
15 

 

 

4  26 
 

15 
 0.5Amp 

30 

I '  
0.5 5 

 0.1Amp 
2 

25
 

I '  
0.5 20 

 0.4Amp 
 

1 25 

I1" 5  0.4  4.6Amp 

I2" 0.1 2.5  2.6Amp 

I3" 2.5  0.5  2 Amp 

RECIPROCITY THEOREM : 

Statement : 



It states that in any bilateral network, if a source of e.m.f ‘E’ in any 

branch produces a current ‘I’ any other branch. Then the same e.m.f ‘E’ acting 

in the second branch would produce the same current ‘I’ in the 1st branch. 

 
 

Step – 1 First ammeter B reads the current in this branch due to the 36v source, 

the current is given by 

4 || 12  
4 12 

 3
16 

R  2  4  3  9

I  
36 

 4 Amp 
9 

IB 
4 12 

 

 

12  3 1 
 

48 
 3Amp 

16 

IB =current through 1  resister 

 
Step – (II) Then interchanging the sources 

and measuring the current 

6 ||12  
612 

 
72 

 4
 

6 12 18 

R  4  3  1  8














I  
36 

 4.5Amp , I  
4.512 

 3Amp Transfer resistance = 
V 
 

36 
12. 

    

8 A 6  2 I 3 

 

COUPLED CIRCUITS 

It is defined as the interconnected loops of an electric network through the 

magnetic circuit. 

There are two types of induced emf. 

(1) Statically Induced emf. 

(2) Dynamically Induced emf. 

Faraday’s Laws of Electro-Magnetic : 

Introduction  First Law :

Whenever the magnetic flux linked with a circuit changes, an emf is induced in 

it. 



OR 

Whenever a conductor cuts magnetic flux an emf is induced in it. 

Second Law :

It states that the magnitude of induced emf is equal to the rate of change of flux 

linkages. 

OR 

The emf induced is directly proportional to the rate of change of flux and 

number of turns 

Mathematically : 

e  
d

dt 

e  N 

Or e =  N
 d

dt 

Where e = induced emf 

N = No. of turns 

 = flux 

‘- ve’ sign is due to Lenz’s Law 

Inductance :

It is defined as the property of the substance which opposes any change in 

Current & flux. 

Unit :     Henry 

Fleming’s Right Hand Rule:

It states that “hold your right hand with fore-finger, middle finger and 

thumb at right angles to each other. If the fore-finger represents the direction of 

field, thumb represents the direction of motion of the conductor, then the middle 

finger represents the direction of induced emf.” 

Lenz’s Law : 

It states that electromagnetically induced current always flows in such a 

direction that the action of magnetic field set up by it tends to oppose the vary 

cause which produces it. 

OR 

It states that the direction of the induced current (emf) is such that it 

opposes the change of magnetic flux. 

(2) Dynamically Induced emf :










In this case the field is stationary and the conductors are rotating in an 

uniform magnetic field at flux density ‘B” Wb/mt2 and the conductor is lying 

perpendicular to the magnetic field. Let ‘l’ is the length of the conductor and it 

moves a distance of ‘dx’ nt in time ‘dt’ second. 

The area swept by the conductor = l. dx 

Hence the flux cut = ldx. B 

Change in flux in time ‘dt’ second = 

E = Blv 

Where V  
dx

 
dt 

Bldx 

dt 

If the conductor is making an angle ‘’ with the magnetic field, then 

 

(1) Statically Induced emf :

Here the conductors are remain in stationary and flux linked with it 

changes by increasing or decreasing. 

It is divided into two types . 

(i) Self-induced emf. 

(ii) Mutually-induced emf. 

(i) Self-induced emf :  It is defined as the emf induced in a coil due to the 

change of its own flux linked with the coil. 

 

 

 

 

 

 
If current through the coil is changed then the flux linked with its own 

turn will also change which will produce an emf is called self-induced emf. 

 

Self-Inductance :

e = Blv sin



It is defined as the property of the coil due to which it opposes any 

change (increase or decrease) of current or flux through it. 

 

Co-efficient of Self-Inductance (L) :

It is defined as the ratio of weber turns per ampere of current in the coil. 

OR 

It is the ratio of flux linked per ampere of current in the coil 

1st Method for ‘L’ :

L  
N

I 

Where L = Co-efficient of self-induction 

N = Number of turns 

 = flux 

I = Current 

 

 
2nd Method for L :

We know that 

L  
N


I 

 LI  N

 LI   N

 L 
dI 

 N 
d


dt dt 

 L 
dI 

 N 
d


dt dt 

 L 
dI 

 e 
 

dt L 

 L 
dI 

dt 
 eL 

 

Where L = Inductance 

e  N
 d 

is known as self-induced emf. 
L dt 

When 
dI 

 1amp / sec. 
dt 

e = 1 volt 

L = 1 Henry 

 L  
 eL

 

dI 

dt 



A coil is said to be a self-inductance of 1 Henry if 1 volt is induced in it. 

When the current through it changes at the rate of 1 amp/ sec. 

3rd Method for L :

L  
M o M r AN 2 

l 

Where A = Area of x-section of the coil 

N = Number of turns 

L = Length of the coil 

(ii) Mutually Induced emf :

It is defined as the emf induced in one coil due to change in current in 

other coil. Consider two coils ‘A’ and ‘B’ lying close to each other. An emf will 

be induced in coil ‘B’ due to change of current in coil ‘A’ by changing the 

position of the rheostat. 

Mutual Inductance :

It is defined as the emf induced in coil ‘B’ due to change of current in coil 

‘A’ is the ratio of flux linkage in coil ‘B’ to 1 amp. Of current in coil ‘A’. 

Co-efficient of Mutual Inductance (M) 

Coefficient of mutual inductance between the two coils is defined as the 

weber-turns in one coil due to one ampere current in the other. 

1st Method for ‘M’ :

M  
N 21 

I1 

N2 = Number of turns 

M = Mutual Inductance 

1 = flux linkage 

I1 = Current in ampere 

2nd Method for M :

We know that 

M  
N 21 

I1 

 MI1  N21 

 MI1  N21 



 M  
 eM

 

dI1 

dt 

l N 

o r 

o r 

 M 
dI

1  N 
dt 2 

 M 
dI1  e 

 

d1 

dt 

dt M 

 M 
dI1  e 

 

dt M 

 

 

 

 

Where eM    N2 

d
1 is known as mutually induced emf. 

dt 

eM  1volt 

Then M = 1 Henry 

A coil is said to be a mutual inductance of 1 Henry when 1 volt is 

induced when the current of 1 amp/sec. is changed in its neighbouring coil. 

3rd Method for M :

M  
Mo Mr AN1N2 

l 

Co-efficient of Coupling : 

Consider two magnetically coupled coils having N1 and N2 turns 

respectively. Their individual co-efficient of self-inductances are 
M M AN 2 

L1  
 o r 2   

l 
M M AN 2 

L2  
 o r 2   

l 

The flux 1 produced in coil ‘A’ due to a current of I1 ampere is 
L I M M AN 2

 
I 

    1 1  o r 1      1   

1 

1 1 

  
Mo Mr AN1I1 

1 
l
 

Suppose a fraction of this flux i.e. K11 is linked with coil ‘B’ 

Then M  
K11  N 



K1 N1 N 2 --------------------------(1) 
 

2 l / M M A 

Similarly the flux 2 produced in coil ‘B’ due to I2 amp. Is 

  
M1Mr AN2 I2 

2 
l
 

Suppose a fraction of this flux i.e. K22 is linked with coil ‘A’ 

Then M  
K22  N 



K 2 N 21 N1 --------------------------(2) 
 

1 l / M M A 

Multiplying equation (1) & (2) 

N 

I 1 

I 2 



L L M M 

dI 

dI 

2 K K N 2 N 2 

M  1  2  1 2   N1
 

l 2 / M 2M 2 A2 
0 r 

2  M M AN 2  M M AN 2 

 K  o r 1  o r 2 
 l  l 

Q K1  K2  K 
M 2  K 2.L .L 

 
K 2 

1   2 

M 2. 
 

 

L1.L2 
 

 

Where ‘K’ is known as the co-efficient of coupling. 

Co-efficient of coupling is defined as the ratio of mutual inductance 

between two coils to the square root of their self- inductances. 

 

Inductances In Series (Additive) :




Let M = Co-efficient of mutual inductance 

L1 = Co-efficient of self-inductance of first coil. 

L2 = Co-efficient of self-inductance of second coil. 

EMF induced in first coil due to self-inductance 

e L1
   L1   

dt
 

Mutually induced emf in first coil 

eM 1
 
  M 

dI
 

dt 

EMF induced in second coil due to self induction 

e L 2
   L 2   

dt
 

Mutually induced emf in second coil 

eM 2
 
  M 

dI
 

dt 

Total induced emf 
e  e  e 

1 2 

 e  e
1 2 

If ‘L’ is the equivalent inductance, then 

 K 
M . 

L1.L2 







dI 





dI 


 L 
dI 

dt 
  L1 

dt
  M 

dI 

dt 

dI 
L2  

dt 
 M 

dI 

dt 

 L 
dI 

  
dI 

(L  L 
  

 2M ) 

dt dt 1 
2

 

 

 

Inductances In Series (Substnactive) :

Let M = Co-efficient of mutual inductance 

L1 = Co-efficient of self-inductance of first coil 

L2 -= Co-efficient of self-inductance of second coil 

Emf induced in first coil due to self induction, 

e  L 
dI

 
 

L1 1 
dt

 

Mutually induced emf in first coil 
e  


 M 

dI  
 M 

dI
 

 

M1 
 

dt 
 

dt 
Emf induced in second coil due to self-induction 

e  L 
dI

 
 

L2 2  
dt

 

Mutually induced emf in second coil 
e  


 M 

dI  
 M 

dI
 

 

M 2 
 

dt 
 

dt 
Total induced emf 

e  e 
1 

 e
2 

 e
1 

e
2 

Then  L 
dI

dt 
  L1 

dt
 

dI 
L 2   

dt 
M 

dI 
 M 

dI 

dt dt 

 L 
dI 

  
dI 

(L  L  2M )  L  L  L 
  

 2M 

dt dt 1 2 1 
2 

Inductances In Parallel :

 L  L1  L2  2M 

L 



L M M 





L 1 




Let two inductances of L1 & L2 are connected in parallel 

Let the co-efficent of mutual inductance between them is M. 

I  i1  i2 

dI 
 

di1  
di2 (1) 

dt dt dt 

e  L di1  M 
di2 

  

1 dt dt 

 L 
di2  M 

di1 
  

2 dt dt 

 L 
di1  M 

di2  L 
  

di2  M 
di1 

  

1 dt dt 2 dt dt 

 (L  M ) 
di1  (L  M ) 

di2
 

  

1 dt 2 dt 

 
di1  

(L2  M ) di2 
 

--------------------------------(2) 
dt (L1  M ) dt 

dI 
 

di1  
di2 

dt dt dt 

 
(L2  M ) di2  

di2 
  

(L1  M ) dt dt 
dI  L2  M  di2 

   dt L  M 1dt ----------------------------(3) 
  1 

If ‘L’ is the equivalent inductance 

e  L 
di

 
dt 

 L1 

di 1  M 
dt 

di 2 
 

dt 

L 
di 
 L 

 

di1  M 
di2 

  

dt 1 dt dt 

 
di 

 
1  

L
 

 
  

di1  M 
di2 ---------------------------- (4)  


dt L 

1 dt 


dt 

Substituting the value of 
di1 

dt 
di 
 

1 
L

 
 

  

L2  M 
 M 

 di2------------------------------------------------------- (5)
 

 
  

dt 
1 L  M 

 
dt 

Equating equation (3) & (5) 



 L2  M   di2 1     L2  M   di2 
 

 
L  M 

  1 
dt 

 
L 
L1

 
L  M 

  M  
dt 

 1       1  
L2  M 1     L2  M  

 L  M 
 1  

L 
L1 

L  M 
  M 1     1  

L  M  L  M 1  L L  L M  L M  M 2 
   2 1  

  1   2 1 1 





L1  M L  L1  M 
L  L  2M 1  L L  M 2 

   1 2  
  1   2 






L1  M L  L1  M 

 L  L   2M  
1 L L 

 

 M 2 
1 2 

L 
1  2 

When mutual field assist. 

 

When mutual field opposes. 

CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS 

 

 The Loop equation are from fig(a)  

V  L di 
 M 

di2 
  

1 1 dt dt 

V   L di2   M 
di1 

  

2 2 dt dt 
 

 
 

 

 

 

 

 

 

 The loop equation are from fig(b) 

V1  (L1 
 

M ) 
di1  M 
dt

d 

dt 
(i1  i2 ) 

L  1 2  
L L  M 2 

L1  L2  2M 

 L   1 2  

L1  L2  2M 

L L  M 2 



V2  (L2 
 

M ) 
di2  M 
dt

d 

dt 
(i1  i2 ) 

Which, on simplification become 

V  L di1  M 
di2 

  

1 1 dt dt 

V  L di2   M 
di1 

  

2 2 dt dt 

So called conductively equivalent of the magnetic circuit . Here we may 

represent ZA = L1-M . 

ZB = (L2-M) and ZC = M 

In case M is + ve and both the currents then ZA = L1-M , ZB = L2-M and ZC = 

M, also , if is – ve and currents in the common branch opposite to each other 

ZA = L1+M , ZB = L2+M and ZC = - M. 

Similarly, if M is –ve but the two currents in the common branch are additive, 

then also. 

ZA = L1+M , ZB = L2+M and ZC = - M. 

Further ZA , ZB and ZC may also be assumed to be the T equivalent of the 

circuit. 

Exp. -01 : 

Two coupled cols have self inductances L1= 1010-3H and L2= 2010- 
3H. The coefficient of coupling (K) being 0.75 in the air, find voltage in the 

second coil and the flux of first coil provided the second coils has 500 turns and 

the circuit current is given by i1 = 2sin 314.1A. 

Solution : 

M  K 

M  0.75 10 103  20 103 

 M  10.6103 H 

 

The voltage induced in second coil is 

  M 
di1

 

2 dt 
 M 

di 

dt 

 10.6 103 
d 

(2 sin 314t) 
dt 

 10.6 103  2  314 cos 314t. 

The magnetic CKt being linear, 

M  
N22 

i1 

 
500  (K1) 

i1 

  
M

 
500  K 

 i1  
10.6 103 




500  0.75 
2 sin 314t 

= 5.66 10-5 sin 314t 

L1L2 



1 
  5.66 105 sin s 314t. 

Exp. 02 

Find the total inductance of the three series connected coupled 

coils.Where the self and mutual inductances are 

L1 = 1H, L2 = 2H, L3 = 5H 

M12= 0.5H, M23 = 1H, M13 = 1H 

Solution: 

LA = L1 + M12 + M13 

= 1 + 20.5 +1 

= 2.5H 

LB = L2 + M23 + M12 

= 2 + 1 + 0.5 

= 3.5H 

LC = L3 + M23 + M13 

= 5 + 1 + 1 

= 7H 

Total inductances are 

Lea = LA + LB + Lc 

= 2.5 + 3.5 + 7 

= 13H (Ans) 

Example 03: 

Two identical 750 turn coils A and B lie in parallel planes. A current 

changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate 

the mutual inductance of the arrangement .If the self inductance of each coil is 

15mH, calculate the flux produced in coil A per ampere and the percentage of 

this flux which links the turns of B. 

Solution: We know that 

 
 

now, 

Wb/A 



 

 

A.C FUNDAMENTAL 

Direct Current Alternating Current 

 

 

 

 

(1) D.C. always flow in one 

direction and whose magnitude 

remains constant. 

(1) A.C. is one which reverse 

periodically in 

direction and whose magnitude 

undergoes a definite cycle changes 

in definite intervals of time. 

(2) 
 

High cost of production. 
(2) Low cost of production 

(3) 

 

 
(4) 

It is not possible by D.C. 

Because D.C. is dangerous to the 

transformer. 

Its transmission cost is too high. 

(3) 

 

 
(4) 

By using transformer A.C. voltage 

can be decreased or increased. 

A.C. can be transmitted to a long 

distance economically. 

 

 
Definition of A.C. terms :- 

Cycle : It is one complete set of +ve and –ve values of alternating quality 

spread over 360 or 2 radan. 

Time Period : It is defined as the time required to complete one cycle. 

Frequency : It is defined as the reciprocal of time period. i.e. f = 1/ T 

Or 

It is defined as the number of cycles completed per second. 

Amplitude : It is defined as the maximum value of either +ve half cycle or –ve 

half cycle. 

Phase : It is defined as the angular displacement between two haves is zero. 



OR 

Two alternating quantity are in 

phase when each pass through their zero 

value at the same instant and also attain 

their maximum value at the same instant in 

a given cycle. 

 
V = Vm sin wt 

i = Im sin wt 
 

Phase Difference :- It is defined as the angular displacement between two 

alternating quantities. 

OR 

If the angular displacement between two waves are not zero, then that is 

known as phase difference. i.e. at a particular time they attain unequal distance. 

OR 

Two quantities are out of phase if they reach their maximum value or 

minimum value at different times but always have an equal phase angle between 

them. 

Here V = Vm sin wt 

i = Im sin (wt-) 

In this case current lags voltage by an angle ‘’. 

Phasor Diagram : 

Generation of Alternating emf :- 

Consider a rectangular coil of ‘N” turns, area of cross-section is ‘A’ nt2 is 

placed in 

x-axis in an uniform magnetic field of maximum flux density Bm web/nt2. The 

coil is rotating in the magnetic field with a velocity of w radian / second. At 

time t = 0, the coil is in x-axis. After interval of time ‘dt’ second the coil make 

rotating in anti-clockwise direction and makes an angle ‘’ with x-direction. 

The perpendicular component of the magnetic field is  = n cos wt 

According to Faraday’s Laws of electro-magnetic Induction 



2 
( I

 


0 

m 
sin  )2 

2

0 

e  N 
d


dt 

 N 
d 

(






cos wt) 

dt m 

 

 

 

 

 
Where 

 N (mw cos wt) 

 Nwm sin wt 

 2fNm sin wt(Q w  2f ) 

 2fNBm Asin wt 

e  Em sin wt 

Em  2fNBm A 

f frequency in Hz 

Bm Maximum flux density in Wb/mt2 

Now when  or wt = 90 

e = Em 

i.e. Em = 2fNBmA 

 

Root Mean Square (R.M.S) Value :

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which 

when flowing through a given circuit for a given time produces same heat as 

produced by the alternating current when flowing through the same circuit for 

the same time. 

Sinuscdial alternating current is 

i = Im sin wt = Im sin 

The mean of squares of the instantaneous values of current over one 

complete cycle 
2  

i2.d

  (2  0) 

The square root of this value is 




 d

2 
i 2.d

0 

2



Im  

2  2

4  1  cos 2 
0 

I 
2 

m 

4

I  
2 

m 

2 2 

2 

0 


I 

I 







 d


  sin 2 2

 



2 
0

 

 

 
 





  Im   

 

I
r .m.s  

 m

  0.707  Im  

 
 

 

Average Value :

The average value of an alternating current is expressed by that steady 

current (d.c.) which transfers across any circuit the same charge as it transferred 

by that alternating current during the sae time. 

The equation of the alternating current is i = Im sin 
 i .d

Iav   (  0) 

 
 

I
 
m.sin 

d



π 

 m sin θ. dθ 

0 
π  

0 

 
I

m   cos     
 

I
m   cos  (cos00 

 

π 0 π 

 
I

m 1 0(1)
π 

Iav 

 
Iav 

 
2Im 



 
2  Maximum Current 

π 

Hence, Iav  0.637Im 

The average value over a complete cycle is zero 


I 

2  2

m 

4   2 
 sin 4 

0  2 
d



I 

2  2

m 

2  
 1  cos 2   

0  2 
d



I 

2  2

m 

2  sin 2  .d
0 

Im  
2  2

4  2  0
0 



1 

2 

1 

2 

Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of 

maximum value to r.m.s value. 

Ka  
MaximumValue 

  
Im    



R.M .S.Value Im 

 1.414 

 

Form factor : - It is defined as the ratio of r.m.s value to average value. 

Kf 
r.m.s.Value 

Average.Value 
 

0.707Im  


0.637Im 

 1.414 

Kf = 1.11 

 

Phasor or Vector Representation of Alternating Quantity :

An alternating current or voltage, (quantity) in a vector quantity which 

has magnitude as well as direction. Let the alternating value of current be 

represented by the equation e = Em Sin wt. The projection of Em on Y-axis at 

any instant gives the instantaneous value of alternating current. Since the 

instantaneous values are continuously changing, so they are represented by a 

rotating vector or phasor. A phasor is a vector rotating at a constant angular 

velocity 

At t1, e1  Em sin wt1 

At t2 , e2  Em sin wt2 

Addition of two alternating Current :

Let e1  Em sin wt 

e2  Em sin(wt   ) 

The sum of two sine waves of the same 

frequency is another sine wave of same 

frequency but of a different maximum value and 

Phase. 

e 

Phasor Algebra :

A vector quantity can be expressed in terms of 

(i) Rectangular or Cartesian form 

(ii) Trigonometric form 

(iii) Exponential form 

2 

2 

2 

e  e  2e e cos2 2 

1 2 1 2 



a2  b2 

 

(iv) Polar form 

 

 
E  a  jb 

 E(cos   j sin  ) 

Where a = E cos  is the active part 

b = E sin  is the reactive part 

  tan1 b  
 Phase angle 

a 
 

j  1(90o ) 

j 2  1(180o ) 

j3   j(270o ) 

j 4  1 (360o ) 
 

 

 

 

 

 
 

 

 
 

(i) Rectangular for :- 

E  a  jb 

tan  b / a 

(ii) Trigonometric form :- 

E  E(cos  j sin  ) 

(iii) Exponential form :- 

E  Ee j

(iv) Polar form :- 

E  E/  e (E  ) 

Addition or Subtration :- 

E1  a1  jb1 

E2  a2  jb2 

E1  E2  (a1  a2 )  (b1  b2 

1 b1  b2 


   tan 
 

a  a 



  1 2 

Multiplication : - 

E1  E2  (a1  ja1 )  (a1  jb2 ) 

 (a1a2  b1b2 )  j(a1a2  b1b2 ) 



2 

2 2 

2 2 2 2 

1 a1b2  b1a2 


   tan 
 

a a  bb 



  1  2 

E1  E11 

1  2 

E2  E22 

E1  E2  E1E2 

Division :- 

1  2 

E1  E11 

E2  E22 

E1 




E11  
E1   



E2 E22 E2 

 

A.C. through Pure Resistance :

Let the resistance of R ohm is connected across to A.C supply of applied 

voltage 
 

 

 

 

 

 

 

 

 

e  Em sin wt -------------------------- (1) 

Let ‘I’ is the instantaneous current . 

Here e = iR 

 i = e/R 

i = Emsin wt / R ------------------------ (2) 

By comparing equation (1) and equation (2) we get alternating voltage 

and current in a pure resistive circuit are in phase 

Instantaneous power is given by 

P = ei 

= Em sin wt . Im sin wt 

= Em Im sin2 wt 

 
Em Im .2sin2 wt 

2 

 
Em . 

Im .(1  cos 2wt) 
2 

P  
Em . 

Im
 

2 
 

Em . 
Im .cos 2wt 

2 

i.e. P  
Vm . 

Im
 
 

Vm . 
Im .cos 2wt

1 2 



2 2 

2 2 

L 

w 

Where Vm  . 
Im is called constant part of power. 

2 2 

Vm   . 
Im  .cos 2wt is called fluctuating part of power. 

 

The fluctuating part 

waves. 

Vm Im .cos 2wt 
2 

of frequency double that of voltage and current 

Hence power for the whole cycle is P  
Vm . 

Im
  Vrms 

.Irms 

 

 
 

A.C through Pure Inductance :

Let inductance of ‘L’ henry is connected across the A.C. supply 
 

 

v  Vm sin wt -------------------------- (1) 

According to Faraday’s laws of electromagnetic inductance the emf induced 

across the inductance 

V  L 
di

 
dt 

di 
is the rate of change of current 

dt 

V sin wt  L 
di

 
m dt 

di 
 

Vm sin wt 

dt L 

 di  
Vm sin wt.dt 
L 

Integrating both sides, 

 di  
Vm  sin wt.dt 

i  
Vm 

 
cos wt 



 
 

 P  VI watts 

L 



2 

2 

2 

i   
Vm cos wt 

wL 

i   
Vm cos wt 
wL 

i   
Vm sin

 
wt 

  




 
wL  

  
Vm sin

 
wt  

  
[Q X 

 
 

 2fL  wL] 
  L 

XL  

Maximum value of i is 
I    

Vm     when 
 


   

is unity. 
 

m sin wt 

L  

Hence the equation of current becomes i  Im sin(wt   / 2) 

So we find that if applied voltage is rep[resented by 

flowing in a purely inductive circuit is given by 

i  Im sin(wt   / 2) 

Here current lags voltage by an angle /2 Radian. 

v  Vm sin wt , then current 

 

Power factor = cos 

= cos 90

= 0 

Power Consumed = VI cos 

= VI  0 

= 0 

Hence, the power consumed by a purely Inductive circuit is zero. 

A.C. Through Pure Capacitance : 



Let a capacitance of ‘C” farad is connected across the A.C. supply of applied 

voltage 

v  Vm sin wt ---------------------------------- (1) 

Let ‘q’ = change on plates when p.d. between two plates of capacitor is ‘v’ 

q = cv 

q = cVm sin wt 

X 



 

R 

R 

dq 
 c 

d 
(V 

  

sin wt) 

dt dt m 

i = cVm sin wt 

= wcVm cos wt 

 
Vm 

1/ wc 
 cos wt 

 
Vm  cos wt [Q X 

 1 


   1  is known as capacitive reactance 
 

Xc 

in ohm.] 

c wc 2fc 

 Im cos wt 

 Im sin(wt   / 2) 

Here current leads the supply voltage by an angle /2 radian. 

Power factor = cos 

= cos 90 = 0 

Power Consumed = VI cos 

= VI  0 = 0 

The power consumed by a pure capacitive circuit is zero. 

A.C. Through R-L Series Circuit : 

The resistance of R-ohm and inductance of L-henry are connected in series 

across the A.C. supply of applied voltage 

e  Em sin wt 

V  VR  jVL 

-----------------------------(1) 

   V 2  V 2   tan1 X L 


R L  
  R 

 (IR)2  (IX )2   tan1 X L 


L  
R 



 I R 2  X 2   tan1 X L 


L  
 

V  IZ  tan1 X L 


 
 



2 2 

Where Z 

 R  jXL 

 
is known as impedance of R-L series Circuit. 

I   
V 

Z
 

Em sin wt 

Z

I  Im sin(wt  ) 

Here current lags the supply voltage by an angle . 

Power Factor : It is the cosine of the angle between the voltage and current. 

OR 

It is the ratio of active power to apparent power. 

OR 

It is the ratio of resistance to inpedence . 

Power :

 v.i 

 Vm sin wt.Im sin(wt  ) 

 Vm Im sin wt.sin(wt  ) 

 
1 

V I 
2 

m   m 2 sin wt.sin(wt  ) 

 
1 

V I 
2 

m   m [cos  cos 2(wt  )] 

Obviously the power consists of two parts. 

(i) a constant part 
1 

V I 
 

cos which contributes to real power. 
2 

m m 

(ii) a pulsating component 
1 

V I 
 

cos(2wt  ) which has a frequency twice 
2 

m m 

that of the voltage and current. It does not contribute to actual power since its 

average value over a complete cycle is zero. 

Hence average power consumed 

 
1 

V I 
 

cos
2 

m m 

 
Vm  . 

Im  

 VI cos

cos 

Where V & I represents the r.m.s value. 

A.C. Through R-C Series Circuit : 

The resistance of ‘R’-ohm and capacitance of ‘C’ farad is connected across the 

A.C. supply of applied voltage 

R2  X 2 L 



R 

e  Em sin wt 
 

V  VR  ( jVC ) 

 IR  ( jIXC ) 

 I (R  jXC ) 

V  IZ 

-----------------------------(1) 

 

Where Z  R  jXC 

Z  R  jX C 



is known as impedance of R-C series Circuit. 

    tan1 XC 


 
 

V  IZ  

 I 
V 

 

 

Z  

 
Em sin wt 

Z  

 
Em sin(wt  ) 
Z

 I  Im sin(wt  ) 

Here current leads the supply voltage by an angle ‘’. 

A.C. Through R-L-C Series Circuit : 

Let a resistance of ‘R’-ohm inductance of ‘L’ henry and a capacitance of ‘C’ 

farad are connected across the A.C. supply in series of applied voltage 
 

 

e  Em sin wt ---------------------------------- (1) 

R2  X 2 
C 

R2  X 2 
C 



R 

  

e  VR  VL  VC 

 VR  jVL  jVC 

 VR  j(VL  VC ) 

 IR  j(IX L  IX C ) 

 I[R  j( X L  XC  )] 

 I 

 

 

 

    tan1 X L  XC 


 
 

 IZ  

Where 

Circuit. 

Z  I is known as the impedance of R-L-C Series 

If X L  XC , then the angle is +ve. 

If X L  XC  , then the angle is -ve. 

Impedance is defined as the phasor sum of resistance and net reactance 

e  IZ  

 I 
e 

Z  
IZ    

Em sin wt 

Z  
 Im sin(wt  ) 

(1) If 

(2) If 

(3) If 

X L  XC , then P.f will be lagging. 

X L  XC , then, P.f will be leading. 

X L  XC , then, the circuit will be resistive one. The p.f. becomes unity 

and the resonance occurs. 

REASONANCE 

It is defined as the resonance in electrical circuit having passive or active 

elements represents a particular state when the current and the voltage in the 

circuit is maximum and minimum with respect to the magnitude of excitation at 

a particular frequency and the impedances being either minimum or maximum 

at unity power factor 

Resonance are classified into two types. 

(1) Series Resonance 

(2) Parallel Resonance 

(1) Series Resonance :- Let a resistance of ‘R’ ohm, inductance of ‘L’ 

henry and capacitance of ‘C’ farad are connected in series across A.C. supply 

R2  ( X    X 
L C 

)2 

R2  ( X    X 
L C 

)2 



o 

o 

1 

 

 

e  Em sin wt 

The impedance of the circuit 

Z  R  j( X L  XC  )] 

Z 

The condition of series resonance: 

The resonance will occur when the reactive part of the line current is zero 

The p.f. becomes unity. 

The net reactance will be zero. 

The current becomes maximum. 

At resonance net reactance is zero 

X L  XC  0 

 X L  XC 

 Wo L 
1 

 

 

WoC 

 W 2LC  1 

 W 2  
1
 

LC 

 Wo 


 2fo 

LC 

 fo 


Resonant frequency ( fo )  
2 

. 

Impedance at Resonance 

Z0 = R 

Current at Resonance 

I  
V

 
o 

R
 

Power factor at resonance 

p. f . 
 R 


 R 

 1 Q Z 

 
 R

Zo R 

R2  ( X    X 
L C 

)2 

LC 

1 

2 LC 

LC 

1 

1 

1 

o 



0 

Resonance Curve :- 
 

At low frequency the Xc is greater and the circuit behaves leading and 

at high frequency the XL becomes high and the circuit behaves 

lagging circuit. 
If the resistance will be low the curve will be stiff (peak). 

 If the resistance will go oh increasing the current goes on decreasing and 

the curve become flat. 

Band Width :

At point ‘A’ the power loss is I 2R. 

The frequency is f0 which is at resonance. 
I 2 R 

At point ‘B’ the power loss is    0 . 
2 

The power loss is 50% of the power loss at point 

‘A”/ 

 

 

 

Hence the frequencies 

corresponding to point ‘B’ is known as half power frequencies f1 & f2. 

f1 = Lower half power frequency 

f1  f0 
R 

 

 

4L 

F2 = Upper half power frequency 

f2  f0 
R 

 

 

4L 

Band width (B.W.) is defined as the difference between upper half power 
frequency ad lower half power frequency. 

B.W. = f2  f1 
R 

 

 

2L 



L 2I 2 




Selectivity : 

Selectivity is defined as the ratio of Band width to resonant frequency 

Selectivity = 
B.W . 

 
 

f0 

   
R 

2L 
Selectivity 

R 
 

 

2fo L 

Quality Factor (Q-factor) :

It is defined as the ratio of 2  Maximum energy stored to energy dissipated 

per cycle 

2  
1 

LI 2 
 

Q-factor = 

 


2 
0 

 
 

I 2 RT 

 
I 2RT 

 
L.2I 2 

I 2 RT 

 
L.2I 2 

I 2 RT 

 
2L. 

RT 

 

 

 

 

 

 

1. 



Q 

I
 

 

 

 
f0 







Quality factor is defined as the reciprocal of power factor. 

 

It is the reciprocal of selectivity. 

Q-factor Or Magnification factor 

 

 
Voltage 

Voltage 

 
I0 X L 

I0 R 

 
X L 

R 

 
across 

across 

 
Inductor. 

resistor 

 
2f0 L 

 
W0 L 

R R 
 

 

 
Q-factor factor  

Voltage 
 

across 
 

Capacotor. 

Voltage across resistor 

 
I0 Xc  

I0 R 

Q factor = 
1. 

cos 

Quality factor =  
2f0 L.

 
R 



Q- factor =  
W0 L 

R 



 
XC 

R 

 
1 

2f 0 C 
 

1 

2f 0 CR 

 

Q2  
W0 L 


R 

1 
 

 

W0CR 

Q2 
1 

 

 

R2C 
 

 

Graphical Method :

(1) Resistance is independent of frequency It represents a straight line. 

(2) Inductive Reactance XL = 2fL 

It is directly proportional to frequency. As the frequency increases , XL 

increases 

(3) Capacitive Reactance XC =  
1 

2fC 
 

 
 

It is inversely proportional to frequency. As the frequency increases, XC 

decreases. 

When frequency increases, XL increases and XC decreases from the 

higher value. 

Q  
1
 

L 

R C 

Q 
1 

R2C 

Q-factor 
1 

W0CR 



R2  X 2 
L 

L L C 

L 

 

At a certain frequency. XL = XC 

That particular frequency is known as Resonant frequency. 

Variation of circuit parameter in series resonance: 

(2) Parallel Resonance :- Resonance will occur when the reactive part of the 

line current is zero. 

 

 

 
At resonance, 

IC – ILsin  = 0 

IC  IL sin 

 
V   



XC 

 
V   



XC 

 
1   



V 

 

V 

R2  X 2 

X L 
 

sin 


 X L 

XC R2  X 

 R2  X 2  X .X 

 Z 2  X L .XC  W0 L 
1 

 
 

W0C 

R2  X 2 
L 

2 

L 



R2  X 2 
L 

R2  X 2 
L 

C  

L 

Z 2  
L

 
C 

 R2  X 
2 
 

L 
L 

C
 

 R2  (2f L)2  
L

 
C 

 R2  4 2 f 
2L2  

L
 

C 

 4 2 f 
2 L2  

L 
 R2 

C 
 f 2  

1 
 
 L 

 R2 





0 4 2 f 

 f0 

2 
L2  

f0 = Resonant frequency in parallel circuit. 

Current at Resonance = I L  cos

 
V 

. 
R 

 
VR 

R2  X 2 

 
VR 

Z 2 

 
VR 

L / C 



 
V 

L / RC 
V 

Dynamic Impedence 

L / RC  Dynamic Impedance of the circuit. 

or, dynamic impedances is defined as the impedance at resonance frequency in 

parallel circuit. 

Parallel Circuit :





The parallel resonance condition: 

1 

2

1 

LC 

2 

 
R 

L2 

0 

0 

0 

0 



1 

1 1 

2 

2 2 

1 1 
2 

2 

1 2 

2 

2 1 





1 

1 

L 

L L 

C 

C C 

L L C 

L C 

L C 

L 



When the reactive part of the line current is zero. 

The net reactance is zero. 

The line current will be minimum. 

The power factor will be unity 

Impedance Z1  R1  jX L 

Z2  R2  jXC 

Admittance Y1 
1 

 
R  jX 

 
(R1  jX L ) 

(R1  jX L )(R1  jX L ) 

 
R1  jX L 

 

R 2  X 2 

Y1 
R1 

R 2  X 2 
 j 

X L
 

R 2  X 2 

Admittance Y2 
2 

 
1 

R1  jXC 

 
(R2  jXC ) 

 

(R21  jXC )(R2  

 
R2  jX L 

 

jXC ) 

R 2  X 2 

Y2 
R2 

R 2  X 2 
 j 

X
C

 

R 2  X 2 

Total Admittance Admittance  1 
 

Z 


1  
  

1 
Z Z 

 Y  Y1  Y2 

  1 2 

 Y 
R1 

R 2  X 2 
 j 

X L
 

R 2  X 2 

 R2 
R 2  X 

 j 
XC

 

R 2  X 2 

  R1  R 2  X 
L

 X C 



 Y    j   R 2  X   2 R 2  X   2  R 2  X   2 R 2  X   2 

1 

At Resonance, 
X L 




L 2 C  1 L 2 C      


XC  0 

 

R 2  X 2 R 2  X 2 

 
X L 

R 2  X 2 
 

XC 

R 2  X 2 

 X L R 2  X 
2  X R 2  X 2 

 2fL R 2  1  1  




R 2  4 2 f 2 L2 
   2 

4 2 f 2C 2  2fC 1 

 2fLR2 
 L 

2fC 2 
R 

2 

 1       
2fC 

2fL2 
 

 

C 



1 

1 

Z L 

1 

Z 

C 2 

C C 


2 



2

1 

2L 

L2C 

L  CR 2 
1 

C 

1 L 

2L C 

f  
1
 

2

1 

LC 


1 

2 LC 

2 

1 

1 

2 

 
L 

2fC 2 

R 
2 

 1       
2fC 

2fL2 

C 
 2fLR2 

 
1  L 

 R 2 
 
 2fL

 L 
 R 2 






2 
 1   2 

fC  C   C 
L 
 R 2

 
2 

 
 

 4 2 f 2 LC  C 1     

 
L  CR1 

L 
 R 2 

 

L  CR 2 

C 
2 

1  L  CR 2 
 4 2 f 2   1    

LC  L  CR2  
1  L  CR 2 

 f 2   1    
 

 
4 LC  L  CR2  

 f 



 f 


f is called Resonant frequency. 

If R 2  0 

Then f  
1
 

L  CR 2 

 




  R 2 

 

 

If R1 and R2 = 0, then 

 
 

Comparison of Series and Parallel Resonant Circuit :

Item Series ckt (R-L-C) Parallel ckt (R– L and 

C) 

f  
1
 

2

L 

L2C 

f 
1 

2

L 

LC 
 1  

R 
2 

L2 


1 

2

L 

L2C 
 1  
R 

2 

L2 

2 2 

1 

2 LC L  CR 


L  CR 
2 

1 



 2    
2 

1 

2




L  CR 2 


L C  LC 2 

1 

2 


R 2    
2 

2 



1 

1 

 Impedance at Resonance Minimum Maximum 

 Current at Resonance 
V 

Maximum= R 

  V  

Minimum= (L / CR) 

 Effective Impedance R L 

CR 

 P.f. at Resonance Unity Unity 

 Resonant Frequency 
  1  

2  LC 

2 

  1 1 
 

R 

2 LC L2 

 It Magnifies Voltage Current 

 Magnification factor 
WL 

R 

WL 

R 















Parallel circuit :




Z1  R1  jX L  R 2  X 2 

Z 2  R1  jXC  R2 2  X 2   

I  
V 

 
V 

  
 

 I   
1 Z  Z 1 1 1 

 
Where 

1 1 1 
V 
 VY 
 

1 

1 

Here Y1  Admittance of the circuit 

Admittance is defined as the reciprocal of impedence. 

1 L 

C 2 

Z 



I 2  I 2 
1 2 

V 

Z 

I1  VY1 
v 

 

 

R1  jX L 

I 2 
V 

Z 2   21 

 1 
2 

 VY2  I 22 

 

 

 

 
 

I   2I1I 2 cos(1  2 ) 

I  I1 1  I22 

 

 
The resultant current “I” is the vector sum of the branch currents I1 & I2 

can be found by using parallelogram low of vectors or resolving I2 into their X 



– and Y- components ( or active and reactive components respectively) and then 

by combining these components. 

 

Sum of active components of I1 and I2 = I1 cos 1+ I2 cos 2 

Sum of the reactive components of I1 and I2 = I2 sin 2 - I1 sin 1 

 
EXP – 01 : 

A 60Hz voltage of 230 V effective value is impressed on an inductance of 

0.265 H 

(i)  Write the time equation for the voltage and the resulting current. Let the 

zero axis of the voltage wave be at t = 0. 

(ii) Show the voltage and current on a phasor diagram. 

(iii) Find the maximum energy stored in the inductance. 

Solution :- 

Vmax  2V  2  230V 

f = 60Hz, W  2f  2  60  377rad / s. 

xl    wl  377  0.265  100 . 

(i) The time equation for voltage is V (t)  230 2 
sin 377t. 

I 
max 

 Vmax / xl  230 /100.  2.3 

  90o (lag ). 

QCurrente quation 

 

is. 

i(t)  2.3 2 sin(377t   / 2) 

or 

(ii) Iti 

 2.3 2 cos 377t 

(iii) or E  
1 

LI 2max  
1 
 0.265  (2.3 

  

2)2  1.4J 
max 

2 2
 

 

 

 

 

Example -02 : 

The potential difference measured across a coil is 4.5 v, when it carries a 

direct current of 9 A. The same coil when carries an alternating current of 9A at 

25 Hz, the potential difference is 24 v. Find the power and the power factor 

when it is supplied by 50 v, 50 Hz supply. 

Solution : 

Let R be the d.c. resistance and L be inductance of the coil. 

R  V / I  4.5 / 9  0.5

2 
3 



R2  222066L2 ) 

1 

With a.c. current of 25Hz, z = V/1. 
24 

 2.66
9 

xl  

 2.62

xl 

xl 

At 50Hz 

xl 

 2  25 L 

 0.0167


 2.62 2  5.24

Z  0.52  5.242 

 5 .06 

I = 50/5.26 = 9.5 A 

P = I2/R = 9.52  0.5 = 45 watt. 

Example – 03 : 

A 50- f capacitor is connected across a 230-v, 50 – Hz supply. Calculate 

(a) The reactance offered by the capacitor. 

(b) The maximum current and 

(c) The r.m.s value of the current drawn by the capacitor. 

Solution : 

(a) xl  
wc 

 
1 


2π fe 

1 

2  50  50 106 
 63.6

(c) Since 230 v represents the r.m.s value 
Q I rms  230 / xl  230 / 63.6  3.62 A 

(b) Im    Ir.m.s   3.62   5.11A 

Example – 04 : 

In a particular R – L series circuit a voltage of 10v at 50 Hz produces a 

current of 700 mA. What are the values of R and L in the circuit ? 

Solution : 

(i) Z 



V  1z 

10  700 103 

 

 

 

 

 

 

 10 / 700 103  100 / 7 

R2  98696L2  10000/ 49 --------------------- (I) 

(ii) In the second case Z 

Q10  500 103  20 

 20 

(R2  98696L2 ) 

Z 2  R 2 2.662  0.52 

2 2 

R 2  (2  50L) 2 

R2  98696L2 

(R 2  98696L2 ) 

R 2  (2  75L) 2 

R 2  222066L2 ) 



R2  222066L2  400 ------------------------------------- (II) 

Subtracting Ea.(I) from (ii), we get, 

222066L2  98696L2  400  (10000 / 49) 

 123370L2  196 

 L2 


 L 

196 
 

 

123370 

196 
 0.0398H 

123370 

 

 
= 40 mH. 

Substituting this value of L in equation (ii) we get 

 R  6.9 . 

R 2  222066L2 (0.398)2  400 

 

Example – 04 : 

A 20 resistor is connected in series with an inductor, a capacitor and an 

ammeter across a 25 –v, variable frequency supply. When the frequency is 

400Hz, the current is at its Maxm value of 0.5 A and the potential difference 

across the capacitor is 150v. Calculate 

(a) The capacitance of the capacitor. 

(b) The resistance and inductance of the inductor. 

Solution : 

Since current is maximum, the circuit is in resonance. 
xl  VC /1  150 / 0.5  300

(a) xl  1/ 2fe  300  1/ 2  400 c 

 c  1.325 106 f  1.325f . 

(b) xl  xl  150 / 0.5  300

2  400 × L =300 

L = 0.49H 

(c) At resonance, 

Circuit resistance = 20+R 

 V/Z = 2510.5 

 R = 30

Exp.-05 

An R-L-C series circuits consists of a resistance of 1000, an inductance 

of 100MH an a capacitance of w f or 10PK 

(ii) The half power points. 

Solution : 

i) fo   
106 

2
 159KHz 

1 

2 101 104 



1 

LC 

2 

 
R 

L2 

ii) 
  

 
1 


1000 

 100 

iii)  
f1  fo 

R 
 

 

4l 
 159 103 

1000 
 

 

4 101 
 158.2KHz 

f2  fo 
R 

 

 

4l 
 159 103 

1000 

4 101 
 159.8KHz. 

Exp. -06 

Calculate the impedance of the parallel –turned circuit as shown in fig. 

14.52 at a frequency of 500 KHz and for band width of operation equal to 20 

KHz. The resistance of the coil is 5. 

Solution : 

At resonance, circuit impedance is L/CR. We have been given the value 

of R but that of L and C has to be found from the given the value of R but that 

of L and C has to be found from the given data. 

BW 
R 

 

 

2l 
,20 103 

5 
 

 

2  l 
or l  39H 

fo  
1 

 

2

C =  2.6 10-9 

Z = L/CR = 3910-6 / 2.6 10-9 5 

= 3 103

Example: A coil of resistance 20Ω and inductance of 200µH is in parallel with 

a variable capacitor. This combination is series with a resistor of 8000Ω.The 

voltage of the supply is 200V at a frequency of 106HZ.Calculate 

i) the value of C to give resonance 

ii) the Q of the coil 

iii) the current in each branch of the circuit at resonance 

Solution: 

 

XL=2πfL=2π*106*200*10-6=1256Ω 

The coil is negligible resistance in comparison to reactance. 

1 L 

R C 

101 

1011 

1 

2

1 

39 106 C (39 106 )2 


52 



 
 

ii) Q= =62.8 

iii) dynamic impedance of the circuit Z=L/CR=200*10-6/(125*10- 
12*20)=80000Ω 
total Z=80000+8000=88000Ω 

I=200/88000=2.27mA 

p.d across tuned circuit=2.27*10-3*80000=181.6V 

current through inductive branch= 

current through capacitor branch= 

=181.6*2π*106*125*10-12=142.7mA 

 

 

 
POLY-PHASE CIRCUIT 

Three-phase circuits consists of three windings i.e. R.Y.B 
 

 

 

 

 

ER   Em sin wt  Em 0 

EY  Em sin(wt  120)  Em   120 

EB  Em sin(wt  240)  Em   240  Em 120 



3 -  Circuit are divided into two types 

 Star Connection 

 Delta Connection 

 
 

Star Connection :


If three similar ends connected at one point, then it is known as star connected 

system. 

The common point is known as neutral point and the wire taken from the 

neutral point is known as Neutral wire. 

Phase Voltage :

It is the potential difference between phase and Neutral. 

Line Voltage : 

It is It is the potential difference between two phases. 

Relation Between Phase Voltage and Line Voltage :





3 

L   L 






  

Line VolatageVRY  VRN  VYN 

 

VL 










VL 





3VPh 

3VPh 

Since in a balanced B –phase circuit VRN= VYN = VBN=Vph 

Relation Between Line current and Phase Current :- 

In case of star connection system the leads are connected in series with 

each phase 

Hence the line current is equal to phase current 

IL = Iph 

Power in 3- Phase circuit:- 

P  V 
ph 

I 
ph 

cos  per phase 

 3V 
ph 

I 
ph 

cos  for 3 phase 

 3 
V 

L I 
L 

cos  (Q V
L 

 3V 
ph 

P  3V I cos

Summaries in star connection: 

i) The line voltages are  apart from each other. 

ii) Line voltages are  ahead of their respective phase voltage. 

iii) The angle between line currents and the corresponding line voltage is 30+φ 

iv) The current in line and phase are same. 

 
Delta Connection :- 

V  V 
RN YN 

 2V   V   Cos60o 
RN    YN 

2 

VPh  V 2 ph  2V 
ph    ph 

V 
1 

2 
2 

3VPh 



 

If the dissimilar ends of the closed mesh then it is called a Delta 

Connected system 

Relation Between Line Current and Phase Current :- 
 

Line Current in wire – 1 = i 
R i Y 

 

Line Current in wire -2 = i 
Y  i B 
 

Line Current in wire – 3 = i 
B i R 

 
 

I L  I R  IY 













Relation Between Line Voltage & Phase Voltage : 
VL  Vph 

Power =  3VL I L cos

Summaries in delta: 

I  I  2IR IY cos 60 
2 2 0 

R Y 

I 2  I 2  2I I 
ph ph ph   ph 

 
1 

2 

 3I ph 
2 

, IL 3I ph 

2 



L   L 

i) Line currents are  apart from each other. 

ii) Line currents are  behind the respective phase current. 

iii) The angle between the line currents and corresponding line voltages is 30+φ 

Measurement of Power : 

(1) By single watt-meter method 

(2) By Two-watt meter Method 

(3) By Three-watt meter Method 

Measurement of power By Two Watt Meter Method :- 
 
 

Phasor Diagram :- 

Let VR, VY,VB are the r.m.s value of 3- voltages and IR,IY,IB are the r.m.s. 

values of the currents respectively. 

Current in R-phase which flows through the current coil of watt-meter 

W1 = IR 

And W2 = IY 
  

Potential difference across the voltage coil of W1  VRB  VR  VB 

  

And W2  VYB  VY  VB 

Assuming the load is inductive type watt-meter W1 reads. 

W1  VRB IR cos(30   ) 

W1  VL IL cos(30  ) ---------------------------- (1) 

Wattmeter W2 reads 

W2  VYB IY cos(30  ) 

W2  VL IL cos(30  ) --------------------------- (2) 

W1  W2  VL IL cos(30  )  VL IL cos(30  ) 

 VL IL [cos(30  )  VL IL cos(30  )] 

 V I (2 cos 30o cos) 

 VL IL (2  3 cos ) 
2 

W1  W2  3VL IL cos --------------------------------- (3) 

W1  W2  VL IL [cos(30  )  cos(30  ) 



L   L 
 V I (2 sin 30o sin  ) 

 VL IL 
(2  

1 
 sin  ) 

2 

W1  W2  VL IL sin

W1  W2 


W1  W2 

VL IL sin  

3VL IL cos

 tan 

 W1  W2 


 tan  
3 

W  W 



 1 2 
1  W1  W2 


    tan 

3 
W  W 




 1 2 

Variation in wattmeter reading with respect to p.f: 
 
 

Pf W1 reading W2 reading 

φ=0,cos φ=1 +ve equal +ve equal 

φ=60,cos φ=0.5 0 +ve 

φ=90,cos φ=0 -ve, equal +ve equal 

 
Exp. : 01 

A balanced star – connected load of (8+56). Per phase is connected to a 

balanced 3-phase 100-v supply. Find the cone current power factor, power and 

total volt-amperes. 

Solution : 

Z ph 

Vph  400 / 

 10

 23 / v 

I ph  Vph / Z ph  231 /10  23.1A 

i) IL = Zph= 23.1A 

ii) P.f. = cos = Rph/zph = 8/10 = 0.8 (lag) 

iii)  PowerP  3VL IL cos

 3  400  23.1 0.8 

= 12, 800 watt. 

iv) Total volt ampere s =3 VL IL 

= 3  400 23.1 

= 16, 000 VA. 

1 

3 

82  62 

3 



 

 

 

 

 

 

Exp. -02 

Phase voltage and current of a star-connected inductive load is 150V and 

25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3-wire 

and power is measured using two watt meters, find the readings of watt meters. 

Solution : 

Vph = 150V 

VL = 3  150 

Iph = IL = 25A 

Total power = 3 VLIL cos  = 3  150 3  25  0.707 = 7954 watt. 

W1 + W2 = 7954.00, cos = 0.707 

 = cos-1 (0.707) = 45, tan 45 = 1 

Now for a lagging power factor, 

tan  

 1 

3(W1  W2 ) /(W1  W2 ) 

3
(W1  W2 ) 




 
7954 




(W1  W2 )  4592w 

From (i) and (ii) above, we get 

W1 = 6273w W2 = 1681w 



TRANSIENTS 
 

Whenever a network containing energy storage elements such as inductor or capacitor is 
switched from one condition to another,either by change in applied source or change in 
network elements,the response current and voltage change from one state to the other 
state.The time taken to change from an initial steady state to the final steady state is known 
as the transient period.This response is known as transient response or transients.The 
response of the network after it attains a final steady value is independent of time and is 
called the steady‐state response.The complete response of the network is determined with 
the help of  a differential equation. 

STEADY STATE AND TRANSIENT RESPONSE 

In a network containing energy storage elements, with change in excitation, the currents 
and voltages in the circuit change from one state to other state. The behaviour of the 
voltage or current when it is changed from one state to another is called the transient state. 
The time taken for the circuit to change from one steady state to another steady state is 
called the transient time. The application of KVL and KCL to circuits containing energy 
storage elements results in differential, rather than algebraic equations. when we consider a 
circuit containing storage elements which are independent of the sources, the response 
depends upon the nature of the circuit and is called natural response. Storage elements 
deliver their energy to the resistances. Hence, the response changes, gets saturated after 
some time,and is referred to as the transient response. When we consider a source acting 
on a circuit, the response depends on the nature of the source or sources.This response is 
called forced response. In other words,the complete response of a circuit consists of two 
parts; the forced response and the transient response. When we consider a differential 
equation, the complete solution consists of two parts: the complementary function and the 
particular solution. The complementary function dies out after short interval, and is referred 
to as the transient response or source free response. The particular solution is the steady 
state response, or the forced response. The first step in finding the complete solution of a 
circuit is to form a differential equation for the circuit. By obtaining the differential 
equation, several methods can be used to find out the complete solution. 

DC RESPONSE OF AN R‐L CIRCUIT 
 

Consider a circuit consisting of a resistance and inductance as shown in figure.The inductor 
in the circuit is initially uncharged and is in series with the resistor.When the switch S is 
closed ,we can find the complete solution for the current.Application of kirchoff’s voltage 
law to the circuit results in the following differential equation. 

 



Figure 1.1 

V = Ri + L             ……………………………………………………………..1.1 

Or  + i = ........................................................... 1.2 

In the above equation , the current I is the solution to be found and V is the applied constant 

voltage. The voltage V is applied to the circuit only when the switch S is closed. The above equation 

is a linear differential equation of first order.comparing it with a non‐homogenious differential 

equation 

  + P x = K ..................................................................... 1.3 

whose solution is 

X =  dt +c ......................................................... 1.4 

Where c is an arbitrary constant. In a similar way , we can write the current equation as 

i = c   dt 

Hence , i   = c   + ................................... 1.5 

To determine the value of c in equation c , we use the initial conditions .In the circuit shown in 
Fig.1.1, the switch s is closed at t=0.at t=0‐,i.e. just before closing the switch s , the current in the 
inductor is zero. Since the inductor does not allow sudden changes in currents, at t=o+ just after 
the switch is closed,the current remains zero. 

Thus at t = 0, i =0 

Substituting the above condition in equation c , we have 

0 = c + 

Substituting the value of c in equation c , we get 

i = ‐  

i = (1‐  ) 

i = (1‐  ) (where  

i =  (1‐ ) ( where ) .................................................... 1.6 



 

 
Figure 1.2 

 
Equation d consists of two parts, the steady state part V/R) and the transient part . 

 
When switch S is closed , the response reaches a steady state value after a time interval as 
shown in figure 1.2. 

Here the transition period is defined as the time taken for the current to reach its final 
or stedy state value from its initial value.In the transient part of the solution, the 
quantity L/R is important in describing the curve since L/R is the time period required 
for the current to reach its initial value of zero to the final value     V/R. The time 

constant of a function   is the time at which the exponent of e is unity, where e 

is the base of the natural logarithms.The term L/R is called the time constant and is 
denoted by τ . 

So, τ = sec 

 
Hence, the transient part of the solution is 

i =        = 

At one Time constant , the transient term reaches 36.8 percent of its initial value. 

 
i(τ) =  ‐ 

 
Similarly, 

= ‐ = ‐0.368 

i(2τ) = ‐ 
 

= ‐0.135 

i(3τ) = ‐ 
 

= ‐0.0498 

i(5τ) = ‐ 
 

= ‐0.0067 

 
After 5 TC the transient part reaches more than 99 percent of its final value. 



In figure A we can find out the voltages and powers across each element by using the current. 

Voltage across the resistor is 

=R i = R (1‐  ) 

Hence , =V (1‐  ) 

 

Similarly, the voltage across the inductance is 

= L  = L =V  

The responses are shown in Figure 1.3. 
 

 
 

Figure 1.3 

 

 
Power in the resistor is 

= i =  V (1‐  ) 

= (1‐  ) +  

Power in the inductor is 
 

 = i = V 

 

= ( ‐ ) 

 
The responses are shown in figure 1.4 . 



 
 

Figure 1.4 
 
 
 
 

Problem : 1.1 
 

Figure 1.5 
 

A series R‐L circuit with R = 30Ω and L = 15 H has a constant voltage V = 50 V applied at t=0 as 

shown in Fig. 1.5 . determine the current i, the voltage across resistor and across inductor. 

Solution : 
 

By applying Kirchoff’s voltage Law, we get 

15 +30i =60 

+2i=4 

 
The general solution for a linear differential equation is 

i=c + dt 

where P=2,K=4 

putting the values 

i=c + dt 
 

i=c + 2 



At t=0, the switch s is closed. 
 

Since the inductor never allows sudden change in currents. At t= the current in the circuit is 

zero. Therefore at t= , i =0 
 

0=c + 2 
 

c =‐ 2 
 

Substituting the value of c in the current equation, we have 

i=2(1‐ ) A 

voltage across resistor ( ) =iR =2(1‐ ) x 30=60(1‐ ) v 

 

voltage across inductor ( ) = L = 15 2(1‐ ) = 30 v= 

 
 

DC RESPONSE OF AN R‐C CIRCUIT 
 

Consider a circuit consisting of a resistance and capacitance as shown in figure.The capacitor in the 
circuit is initially uncharged and is in series with the resistor.When the switch S is closed at t=0 , we 
can find the complete solution for the current.Application of kirchoff’s voltage law to the circuit 
results in the following differential equation. 

 

 
Figure 1.6 

 

V = Ri +   ……………………………………………………………..1.7 

By differentiating the above equation, we get 

 

0 = R + i ……………………………………………………1.8 

Or 
 

+ 

 
 

i =0 

  
 
 

……………………………………………………1.9 



Equation c is a linear differential equation with only the complementary function. The particular 
solution for the above equation is zero. The solution for this type of differential equation is 

 

i = c   …………………………………..1.10 

 
To determine the value of c in equation c , we use the initial conditions .In the circuit shown in 
Fig. the switch s is closed at t=0. Since the capacitor does not allow sudden changes in voltage, it 
will act as a short circuit  at t=o+ just after the switch is closed. 

So the current in the circuit at t = 0+ is 
 

Thus at t = 0, the current i = 
 

Substituting the above condition in equation c , we have 

= c 

 
Substituting the value of c in equation c , we get 

i =   ………………………………………………1.11 
 
 

Figure 1.7 

 

 
When switch S is closed , the response decays as shown in figurre. 

The term RC is called the time constant and is denoted by τ . 

So, τ = RC sec 

After 5 TC the curve reaches 99 percent of its final value. 

In figure A we can find out the voltage across each element by using the current equation. 

Voltage across the resistor is 



=R i = R 

 

Hence , =V 
 

Similarly, voltage across the capacitor is 

=  

=  

= ‐  + c 

= ‐ V    + c 

At t=0,voltage across capacitor is zero 

So, c = V 

And 

= V  

The responses are shown in Figure1.8. 
 
 

 
Figure 1.8 

Power in the resistor is 

= i = V  

 

=  

Power in the capacitor is 

 
= i = V (1‐ 



= ( ‐ ) 

 
The responses are shown in figure 1.9. 

 

 

Figure 1.9 
 

Problem : 1.2 
 

A series R‐C circuit with R = 10Ω and C =0.1 F has a constant voltage V = 20 V applied at t=0 as 

shown in Fig. determine the current i, the voltage across resistor and across capacitor. 
 
 
 

 

Figure 1.10 
 

Solution : 
 

By applying Kirchoff’s voltage Law, we get 

10i + =20 

Differentiating w.r.t. t we get 

10 + = 0 

+ i= 0 

 
The solution for above equation is 



i=c 
 

At t=0, the switch s is closed. 
 

Since the capacitor never allows sudden change in voltages. At t=  the current in the circuit is 

i = V/R=20/10 =2 A 

. Therefore at t= 0, i =2 A 
 

the current equation is i=2 
 

voltage across resistor ( ) =iR =2 x 10=20 v 

 

 
voltage across capacitor ( ) = V = 20(1‐ )  V 

 
 
 

DC RESPONSE OF AN R‐L‐C CIRCUIT 
 

Consider a circuit consisting of a resistance, inductance and capacitance as shown in figure.The 

capacitor and inductor in the circuit is initially uncharged and are in series with the resistor.When 

the switch S is closed at t=0 , we can find the complete solution for the current.Application of 

kirchoff’s voltage law to the circuit results in the following differential equation. 

 

 
Figure 1.11 

 

V = Ri + L +    ……………………………………………………………..1.12 

By differentiating the above equation, we get 

0 = R  + i = ...............................................................1.13 

Or 

 + + i =0 ........................................................... 1.14 



The above equation c is a second order linear differential equation with only the complementary 
function. The particular solution for the above equation is zero. The characteristics equation for this 
type of differential equation is 

 + D + = 0 ..............................................................1.15 

 
The roots of equation 1.15 are 

 = ‐ 

By assuming =‐ and =  

     and   =  
 

Here  may be positive,negative or zero . 
 

Case I :   > 

Then , the roots are Real and Unequal and give an over damped Response as shown in figure 
1.12. 

The solution for the above equation is : i = + 
 

 
Figure 1.12 

 

Case II : 
  

 

Then , the roots are Complex Conjugate, and give an under‐damped Response as shown in 

figure 1.13. 

 
 



Figure 1.13 
 

The solution for the above equation is : i =   

Case III : 

Then , the roots are Equal and give an Critically‐damped Response as shown in figure 1.14. 
 

 
Figure 1.14 

 

The solution for the above equation is : i =   

Problem : 1.3 

A series R‐L‐C circuit with R = 20Ω , L = 0.05H and C = 20 μF has a constant voltage V = 100 V 

applied at t=0 as shown in Fig. determine the transient current i . 
 

Figure 1.15 

 

 
Solution : 

 

By applying Kirchoff’s voltage Law, we get 

100=30i 0.05 

Differentiating w.r.t. t we get 
 

+20 + i =0 



+400 + i =0 
 

+ 400D + i = 0 
 

The roots of equation are 

 
 = ‐ 

 
= ‐200 

 

 ‐200+j979.8 

 
‐200‐j979.8 

 

Therefore the current 
 

i =  

 

i =  A 

 
 
 
 

At t=0, the switch s is closed. 
 

Since the inductor never allows sudden change in currents. At t= the current in the circuit is 

zero. Therefore at t= , i =0 

i =0 =(1)  
 

= 0 and i =  A 
 

Differentiating w.r.t. t we get 

 
 

At t=0, the voltage across the inductor is 100 V 

 =100 or  = 2000 

At t=0,  = 2000= 

=  =2.04 

 

The current equation is 



i= 

 
 
 

 
ANALYSIS OF CIRCUITS USING LAPLACE TRANSFORM 

TECHNIQUE 

The Laplace transform is a powerful Analytical Technique that is widely used to study the 

behavior of Linear,Lumped parameter circuits. Laplace Transform converts a time domain 

function f(t) to a frequency domain function F(s) and also Inverse Laplace transformation 

converts the frequency domain function F(s) back to a time domain function f(t). 

L { f(t)} = F(s) =  f(t) dt ............................................................................. LT 1 

 
{ F(s)} = f(t) = ds................................................................... LT 2 

 
DC RESPONSE OF AN R‐L CIRCUIT (LT Method) 

 

Let us determine the solution i of the first order differential equation given by equation A which 

is for the DC response of a R‐L Circuit under the zero initial condition i.e. current is zero, i=0 at 

t=     and hence i=0  at t=  in the circuit in figure A by the property of Inductance not allowing 

the current to change as switch is closed at t=0. 

 

 
Figure LT 1.1 

 

V = Ri + L    ……………………………………………………………..LT 1.1 

Taking the Laplace Transform of bothe sides we get, 
 

=R I(s) + L [ s I(s) –I(0) ]................................................ LT 1.2 

 

  =R I(s) + L [ s I(s) ] ( I(0) =0 : zero initial current ) 

  = I(s)[R +L s] 

I(s) = ........................................................... LT 1.3 



Taking the Laplace Inverse Transform of both sides we get, 

I(s)} =  

i(t) =      ( Dividing the numerator and denominator by L ) 

putting  we get 

i(t) =    =  ( } 

i(t) =  ( } ( again putting back the value of 

i(t) =  ( } =   ( 1‐  ) = ( 1‐   ) (where  

i(t)= ( 1‐ ) ( where     ) .................................................. LT 1.4 

It can be observed that solution for i(t) as obtained by Laplace Transform technique is same as 
that obtained by standard differential method . 

DC RESPONSE OF AN R‐C CIRCUIT(L.T.Method) 
 

Similarly , 

Let us determine the solution i of the first order differential equation given by equation A which 
is for the DC response of a R‐C Circuit under the zero initial condition i.e. voltage across 
capacitor is zero,  =0 at t= and hence  =0  at t= in the circuit in figure A by the property 

of capacitance not allowing the voltage across it to change as switch is closed at t=0. 

 

 
Figure LT 1.2 

 

V = Ri +    ……………………………………………………………..LT 1.5 

Taking the Laplace Transform of both sides we get, 

=R I(s) + [  +I (0) ] .................................... LT 1.6 

  =R I(s) + [   ] ( I(0) =0 : zero initial charge ) 

= I(s)[R + ] = I(s)[ ] 



I(s) = [ ] =   ………………………………..LT 1.7 

Taking the Laplace Inverse Transform of both sides we get, 

I(s)} =  

i(t) =     ( Dividing the numerator and denominator by RC ) 

putting we get 

i(t) =    = 

i(t) =  ( putting back the value of 

i(t) =   (where  ………………………………..LT 1.8 

i(t)= ) ( where     RC ) 

It can be observed that solution for i(t) as obtained by Laplace Transform technique in q is 
same as that obtained by standard differential method in d. 

DC RESPONSE OF AN R‐L‐C CIRCUIT ( L.T. Method) 
 
 

 

Figure LT 1.3 

Similarly , 
 

Let us determine the solution i of the first order differential equation given by equation A which 
is for the DC response of a R‐L‐C Circuit under the zero initial condition i.e. the switch s is closed 
at t=0.at t=0‐,i.e. just before closing the switch s , the current in the inductor is zero. Since the 
inductor does not allow sudden changes in currents, at t=o+ just after the switch is closed,the 
current remains zero. also the voltage across capacitor is zero i.e.  =0 at t= and hence  =0 

at t=  in the circuit in figure by the property of capacitance not allowing the voltage across it 

 to suddenly change as switch is closed at t=0. 

 
V = Ri + L .......................................................... LT 1.9 

 
Taking the Laplace Transform of both sides we get, 



=R I(s) ++ L [ s I(s) –I(0) ]+   [  +I (0) ] .................................... LT 1.10 

  =R I(s) +  [   ] ( & I(0) =0 : zero initial 

charge ) 

  = I(s)[R +L ] = I(s)[ ] 

I(s) = [ ] =       ………………………………..LT 1.11 

Taking the Laplace Inverse Transform of both sides we get, 

I(s)} =  

i(t) =   ( Dividing the numerator and denominator by LC ) 

i(t) =  

putting =   we get 

i(t) =  

The denominator polynomial becomes =  

where,   = = 

where, = ; =    and = 

By partial Fraction expansion , of I(s) , 

I(s) =   +  

A = s= 
 

=  

B = s= 
 

=   =  ‐  

I(s) =  (  

Taking the Inverse Laplace Transform 



i(t) =   +  

Where   and   are constants to be determined and and aren the roots of the 

equation. 

Now depending upon the values of and , we have three cases of the response. 

CASE I : When the roots are Real and Unequal, it gives an over‐damped response. 

         
          or ; In this case, the solution is given by 

i(t) = +  ) .................................... LT 1.12 

 
or i(t) =   +        for t 0 

CASE II : When the roots are Real and Equal, it gives an Critically‐damped response. 

    =           or ; In this case, the solution is given by 

or 

i(t) =   ( +   ) for t 0 ....................................LT 1.13 

CASE III : When the roots are Complex Conjugate, it gives an under‐damped response. 

            or ; In this case, the solution is given by 

i(t) =   +        for t 0 

where,   = 

Let     = = j where j =   and =  

 
 

Hence , i(t) =   + ) 

 
 

i(t) =  

i(t) =     

i(t) =     ………………………………..LT 1.14 

 

 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,xxxxxxxxxxxxxxxxx,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 



 

TWO PORT NETWORKS 
 

Generally, any network may be represented schematically by a rectangular box. A network may be 
used for representing either Source or Load , or for a variety of purposes. A pair of terminals at 
which a signal may enter or leave a network is called a port. A port is defined as any pair of terminals 
into which energy is withdrawn ,or where the network variables may be measured .One such 
network having only one pair of terminals (1‐1’)is shown figure 1.1. 

 
 

 

 
 

Figure 1.1 
 

A two‐port network is simply a network a network inside a black box, and the network has only two 
pairs of accessible terminals; usually one one pairs represents the input and the other represents the 
output. Such a building block is very common in electronic systems, communication system, 
transmission and distribution system. fig 1.1 shows a two‐port network,or two terminal pair 
network,in which the four terminals have been paired into ports 1‐1’ and 2‐2’.The terminals 1‐1’ 
together constitute a port. Similarly, the terminals 2‐2’ constitute another port. Two ports containing 
no sources in their branches are called passive ports ; among them are power transmission lines and 
transformers. Two ports containing source in their branches are called active ports. A voltage and 
current assigned to each of the two ports. The voltage and current at the input terminals are  and 

; where as  and are entering into the network are , ,and , . Two of these are 

dependent variable, the other two are indepent variable. The number of possible combinations 

generated by four variable, taken two at time, is six. Thus, there are six possible sets of equations 

describing a two‐port network. 

  OPEN CIRCUIT IMPEDANCE (Z) PARAMETERS 
 

A general linear two‐port network is shown below in figure 1.2. 
 

The z parameters of a two‐port network for the positive direction of voltages and currents may be 

defined by expressing the port voltages and  in terms of the currents  and . Here and  

are two dependent variables and  and   are two independent variables. 



 
 

Figure 1.2 
 

The voltage at port 1‐1’ is the response produced by the two currents  and . 

thus 

  ………………………………………………. 1.1 

  ……………………………………………………….. 1.2 
 

 are the network functions, and are called impedance(Z) parameters, and are 

defined by equations 1.1 and 1.2 . 

These parameters also can be represented by Matrices . 

We may write the matrix equation [V] = [Z][I] 

where V is the column matrix = [  ] 

Z is a square matrix =  

and we may write in the column matrix = = [  ] 

Thus, [  ] =  [  ] 

The individual Z parameters for a given network can be defined by setting each of the port currents 
equal to zero. suppose port 2‐2’ is left open circuited, then  =0. 

 
Thus  = 

where 

 
 

similarly,

 = 

where 

 
. 



Suppose port 1‐1’ is left open circuited, then  =0. 

Thus,   = 

where 

 

. 
 

similarly, 
 

 = 

 
where 

 
.The equivalent circuit of the two‐port networks governed by the equations 1.1 and 1.2 ,i.e. open 
circuit impedance parameters as shown below in fig 1.3. 

 
 

 

Figure 1.3 
 
 
 

If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle 
 

= 

 

or 
 

 

It is observed that all the parameters have the dimensions of impedance. Moreover, individual 

parameters are specified only when the current in one of the ports is zero. This corresponds to one 

of the ports being open circuited from which the Z parameters also derive the name open circuit 

impedance parameters. 
 

Problem 1.1 



Find the Z parameters for the circuit shown in Figure 1.4 
 

 

Figure 1.4 
 

Solution The circuit in the problem is a T network. From Eqs 16.1 and 16.2 we have 

          and  

When port b‐b’ is open circuited, 

= 
 

Where  

 
) 

 
 = 

 
Where  

When port a‐a’ is open circuited, =0 

 = 

 
where ) 

 
) 

 
 = 

 
where   and  

 
It can be observed that , so the network is a bilateral network which satisfies the 

principle of reciprocity. 

SHORT‐CIRCUIT ADMITTANCE (Y) PARAMETERS 



 
 

Figure 1.5 
 

A general two‐ port network which is considered in Section 16.2 is shown in Fig 16.5The Y 

parameters of a two‐ port for the positive directions of voltages and currents may be defined by 

expressing the port currents  and  in terms of the voltages and . Here ,   are dependent 

variables and and  are independent variables.  may be considered to be the superposition of 

two components, one caused by  and the other by . 

 

Thus, 
 

  ………………………………………………………… 1.3 
 

Similarly,     …………………………………………………………1.4 
 

,   and  are the network network functions and are also called the admittance 

(Y) parameters. They are defined by Eqs 16.3 and 16.4. These parameters can be represented by 

matrices as follows 
 

[I]=[Y][V] 
 

where I= [ ] ; Y=[  ]   and V = [  ] 

Thus , 

[ ] = [  ] [  ] 

The individual Y parameters for a given network can be defined by setting each port voltage to zero. 

If we let  be zero by short circuiting port 2‐2’ then 

 

=  =0 

 is the driving point admittance at port 1‐1’, with port 2‐2’ short circuited.It is also called the 

short circuit input admittance. 

=  =0 

 is the transfer admittance at port 1‐1’, with port 2‐2’ short circuited.It is also called the short 

circuited forward transfer admittance. If we let   be zero by short circuiting port 1‐1’,then 



= =0 

 

  is the transfer admittance at port 2‐2’, with port 1‐1’ short circuited. It is also called the short 

circuited reverse transfer  admittance. 

=  =0 

  is the short circuit driving point admittance at port 2‐2’, with port 1‐1’ short circuited. It is also 

called the short circuited output admittance.The equivalent circuit of the network governed by 

equation 1.3 & 1.4 is shown in figure 1.6. 

 

 
Figure 1.6 

 

If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle 
 

= 

 

or 
 

= 
 

It is observed that all the parameters have the dimensions of admittance. Moreover, individual 

parameters are specified only when the voltage in one of the ports is zero. This corresponds to one 

of the ports being short circuited from which the Y parameters also derive the name short circuit 

admittance parameters. 
 

Problem 1.2 Find the Y‐parameters for the network shown in Fig.1.7 
 



Fig1.7 
 

Solution : 
 

=  =0 

When b‐  is short circuited,  = 0 and the network looks as shown in Fig. 1.8(a) 
 
 
 
 

 

 

Fig.1.8(a) 
 

=  

 
 = 2 

 
So,  =  

 

=  =0  = = 

= =0 
 

When b‐ is short circuited, ‐ =      = 

 
so, ‐  = 

 

and = =0 = ‐ 

 

similarly, when port a‐  is short circuited,  = 0 and the network looks as shown in Fig. 1.8(b) 



 
 

= =0 

 

 = where is the equivalent impedance as viewed from b‐ . 

 

= 

 

 = 

 

=  =0 = 

= =0 
 

with a‐  is short circuited , ‐  = 

 
Since , =5  

‐ = 5  = 

So, = =‐ 

 
The describing equations in terms of tye admittance parameters are 

 

 

 
 

Transmission (ABCD) parameters 



 
 

Figure 1.9 
 

Transmission parameters or ABCD parameters are widely used in transmission line theory and 

cascaded networks. In describing the transmission parameters, the input variables and  at port 

1‐1’, usually called the sending end are expressed in terms of the output variables and at port 

2‐2’, called, the receiving end.The transmission parameters provide a direct relationship between 

input and output.Transmission patameters are also called general circuit parameters, or chain 

nparameters. They are defined by 

  ………………………………………………………………………… 1.5 

  …………………………………………………………………………..1.6 

The negative sign is used with  , and not for the parameter B and D. Both the port currents  and ‐ 

are directed to the right, i.e. with a negative sign in equation a and b the currents at port 2‐2’ 

which leaves the port is designated as positive.The parameters A,B,C and d are called Transmission 

parameters. In the matrix form, equation a and b are expressed as , 

[  ] =  [  ] 

The matrix    is called Transmission Matrix. 

For a given network, these parameters can be determined as follows. With port 2‐2’ open circuited 

i.e.  =0 ; applying a voltage   at the port 1‐1’, using equ a , we have 

A = and C = 

hence, = =  =0 

 
1/A is called the open circuit voltage gain a dimension less parameter. And = =  

=0 is called open circuit transfer impedance. with port 2‐2’ short circuited, i.e.    =0 , applying 

voltage   at port 1‐1’ from equn . b we have 

 

‐B = and ‐D = 



 
 

 

‐ = = =0 is called short circuit transfer admittance 

and , 

 
 

‐ = 

 
 

 
= 

 
 

 
=0 is called short circuit current gain a dimension less parameter. 

 

Problem 1.3 
 

Find the transmission or general circuit parameters for the circuit shown in Fig.1.10 
 

 

Fig. 1.10 
 
 
 

Solution : From Equations 1.5 and 1.6 , we have 
 

 

 

when b‐b’ is open circuited i.e.  =0, we have 

A = 

where =  and = and hence, A= 
 

C =  = 

 

when b‐b’ is short circuited i.e.  =0, we have 

B = ‐ and D =‐ 

In the circuit, ‐  = and so, B= 



similarly,  = and ‐  = 

and hence D = 

 
 

Hybrid parameters 
 

Hybrid parameters or h‐parameters find extensive use in transistor circuits. They are well suited to 

transistor circuits as these parameters can be most conveniently measured. The hybrid matrices 

describe a two‐port network, when the voltage of one port and the current of other port are taken 

as the independent variables. Consider the network in figure 1.11. 
 

If the voltage at port 1‐1’ and current at port 2‐2’ are taken as dependent variables,we can 

express them in terms of   and   . 

 

  ………………………………………………. 1.7 

 ………………………………………………….1.8 

The coefficient in the above terms are called hybrid parameters.In matrix notation 

[  ] =  [  ] 

 

Figure 1.11 
 

from equation a and b the individual h parameters may be defined by letting  and  = 0. 

when  = 0,the port 2‐2’ is short circuited. 

Then  = =0 = short circuit input impedance. 

 
 = =0 = short circuit forward current gain 

Similarly, by letting port 1‐1’ open,  

= =0 = open circuit reverse voltage gain 



= =0 = open circuited output admittance 

 

Since h‐parameters represent dimensionally an impedance, an admittance,a voltage gain and a 

current gain, they are called hybrid parameters .An equivalent circuit of a two‐port network in terms 

of hybrid parameters is shown below. 

 

 

Figure 1.12 
 
 
 
 
 

Problem 1.4 
 

Find the h‐parameters of the network shown in Fig 1.13. 
 

Fig.1.13 
 

Solution : 
 

From equations 1.7 and 1.8 , we have 
 

= =0 ; = =0; = ; = =0 

If port b‐  is short circuited,  = 0 and the network looks as shown in Fig. 1.14(a) 



 

 
 

Fig.1.14(a) 
 
 

 

= =0; 

 

is the equivalent impedance as viewed from port a‐  is 2Ω 
 

so,  = 2 V 

 
 = = 2Ω 

 
 = =0 when =0; ‐  = and hence =‐ 

 
If port a‐ is open circuited,  = 0 and the network looks as shown in Fig. 1.14(b) then 

 

 
Fig.1.14(b) 

 

=   and = 2 ; = 

 = 4 ; = 



= =   and = =0 = 
 
 

 

INTER RELATIONSHIPS OF DIFFERENT PARAMETERS 

Expression of z parameters in terms of Y parameters and vice‐versa 

From equations 1.1,1.2,1.3 & 1.4 , it is easy to derive the relation between the open circuit 

impedance parameters and the short circuit admittance parameters by means of two matrix 

equations of the respective parameters. By solving equation a and b for   and  , we get 

 

=   / ; and =  / 

where     is the determinant of Z matrix 

=  

=       ‐         ………………………………………………………………… 1.9 

= ‐       +        ……………………………………………………………… 1.10 

comparing equations 1.9 and 1.10 with equations 1.3 and 1.4 we have 

; = ‐  

= ‐   ; =  

In a similar manner, the z parameters may be expressed in terms of the admittance parameters by 

solving equations 1.3 and 1.4 for   and  

 

=   / ; and =  / 

where     is the determinant of Y matrix 

=  

=       ‐         …………………………………………………………………1.11 

= ‐       +       ……………………………………………………………….. 1.12 

comparing equations 1.11 and 1.12 with equations 1.1 and 1.2 we have 



; = ‐ 

 
= ‐ ; = 

 

General Circuit Parameters or ABCD Parameters in Terms of Z parameters 

and Y Parameters 
 

We know that 
 
 

 ;  ;  
 

; ; 
 

A = ;   C = ; B = ‐ ; D = ‐ 

 

Substituting the condition     =0 in equations 1.1 and 1.2 we get 

 

A = =  

Substituting the condition     =0 in equations 1.4 we get , 
 
 
 

A = =  

Substituting the condition     =0 in equations 1.2 we get 

C = =  

Substituting the condition =0 in equation 1.3 and 1.4 and solving for gives 
 

Where   is the determinant of the admittance matrix 

=     = C 

Substituting the condition     =0 in equations 1.4, we get 

 
= ‐ = B 

 
Substituting the condition =0 in equation 1.1 and 1.2 and solving for gives 

 

Where   is the determinant of the  impedance matrix 



‐ =     = B 

Substituting the condition   =0 in equation 1.2 we get , 

 

=      = D 

Substituting the condition     =0 in equations 1.3 and 1.4 

we get 

=     = D 

 

T and 
 

A two‐port network with any number of elements may be converted into a two‐port three‐ 

element network. Thus, a two‐port network may be represented by an equivalent T‐ 

network, i.e. three impedances are connected together in the form of a T as shown in figure 

1.15. 

 

 
 
 

Figure 1.15 
 

It is possible to express the elements of the T‐network in term of Z parameters,or ABCD 

parameters as explained below. 

Z parameters of the network 
 

 = = 0 =  

 
= = 0 = 

representation 



= = 0 = 
 

= = 0 =  

 

From the above relations, it is clear that 
 

             ‐  
 

‐  
 

‐  
 

ABCD parameters of the network 
 

A =  = 0 =  

B = = 0 

 
When 2‐  is short circuited 

 

=  

B = +  

C =  = 0 = 

D = = 0 

 
When 2‐  is short circuited 

 

 = 

D = 

From the above relations we can obtain 
 

= ; =  ; = 

 

Problem :1.6 



 

The Z parameters of a Two‐port network are  , = =5Ω. 

Find the equivalent T network and ABCD Parameters. 

Solution : 
 

The equivalent T network is shown in Figure 1.16 

where  =  ‐  = 5Ω 

 =  ‐  = 10 Ω 
 

and   = 5Ω 

The ABCD parameters of the network are 

A = +1 =2 ; B =( )+  = 25 Ω 

C = =0.02   ; D = 1  =3 

In a similar way a two‐port network may be represented by an equivalent ‐ network, i.e. 

three impedances or admittances are connected together in the form of as shown in Fig 

1.17. 

 



Fig. 1.16 Fig.1.17 
 

It is possible to express the elements of the ‐network in terms of Y parameters or ABCD 

parameters as explained below. 

Y‐parameters of the network 
 
 
 
 

= =0 = + 

 

= 
 

=0 
 

=‐  

 

= 
 

=0 
 

= + 

 

= 
 

=0 
 

=‐  

 
From the above relations , it is clear that 

 = +  

=‐            

= +  

Writing ABCD parameters in terms of Y parameters yields the following results. 
 

A   = 
 

B =  = 

C =   = + +  

D =   =  

from the above results, we obtain 
 

=    ; = ; 

=  

………………………………………………………xxxxxxxxxxxxxxxxxxxx………………………………………. 



 CLASSIFICATION OF FILTERS 
 

A filter is a reactive network that freely passes the desired band of frequencies while almost 

totally suppressing all other bands. A filter is constructed from purely reactive elements, for 

otherwise the attenuation would never becomes zero i n the pass band of the filter network. 

Filters differ from simple resonant circuit in providing a substantially constant transmission 

over the band which they accept; this band may lie between any limits depending on the 

design. Ideally, filters should produce no attenuation in the desired band, called the 

transmission band or pass band, and should provide total or infinite attenuation at all other 

frequencies, called attenuation band or stop band. The frequency which separates the 

transmission band and the attenuation band is defined as the cut‐off frequency of the wave 

filters, and is designated by fc 

Filter networks are widely used in communication systems to separate various voice 

channels in carrier frequency telephone circuits. Filters also find applications in instrumentation, 

telemetering equipment etc. where it is necessary to transmit or attenuate a limited range of 

frequencies. A filter may, in principle, have any number of pass bands separated by attenuation 

bands.However, they are classified into four common types, viz.low pass, high pass, band pass and 

band elimination. 
 

Decibel and neper 

The attenuation of a wave filter can be expressed in decibels or nepers.Neper is defined as the 

natural logarithm of the ratio of input voltage (or current) to the output voltage (or current), provide 

that the network is properly terminated in its characteristic impedance Z 0 . 
 

 

Fig .9.1 (a) 

 
From fig. 9.1 (a) the number of nepers, N= log e [V1/V2] or loge [I1/I2]. A neper can also be 

expressed in terms of input power,P1 and the output power P2 as N=1/2 loge P1/P2. A decibel is 

defined as ten times the common logarithms of the ratio of the input power to the output power. 

Decibel D=10 log10P1/P2 



The decibel can be expressed in terms of the ratio of input voltage (or current) and the output 

voltage (or current.) 
 

D=20 log10[V1/V2] =20 log10[I1/I2] 
 

* One decibel is equal to 0.115 N. 
 

Low Pass Filter 
 

By definition a low pass (LP) filter is one which passes without attenuation all frequencies 

up to the cut‐off frequency fc , and attenuates all other frequencies greater than fc .The 

attenuation characteristic of an ideal LP filter is shown in fig.9.1(b).This transmits currents of all 

frequencies from zero up to the cut‐off frequency. The band is called pass band or transmission 

band.Thus,the pass band for the LP filter is the frequency range 0 to fc.The frequency range 

over which transmission does not take place is called the stop band or attenuation band. The stop 

band for a LP filter is the frequency range above fc . 
 

 

Fig.9.1 (b) 
 

High Pass Filter 
 

A high pass (HP) filter attenuates all frequencies below a designated cut‐off frequency, fc , and 

passes all frequencies above fc . Thus the pass band of this filter is the frequency range above fc, and 

the stop band is the frequency range below fc . The attenuation characteristic of a HP filter is shown 

in fig.9.1 (b). 
 

Band Pass Filter 



A band pass filter passes frequencies between two designated cut‐off frequencies and 

attenuates all other frequencies. It is abbreviated as BP filter. As shown in fig.9.1 (b), a BP filter has 

two cut‐off frequencies and will have the pass band f2 – f1; f1 is called the lower cut –off frequency, 

while f2 is called the upper cut‐off frequency. 
 

Band Elimination filter 

A band elimination filter passes all frequencies lying outside a certain range, while it attenuates 

all frequencies between the two designated frequencies. It is also referred as band stop filter. The 

characteristic of an ideal band elimination filter is shown in fig.9.1 (b). All frequencies between f1 

and f2 will be attenuated while frequencies below f1 and above f2 will be passed. 
 

 FILTER NETWORKS 
 

Ideally a filter should have zero attenuation in the pass band. This condition can only be 

satisfied if the elements of the filter are dissipationless.which cannot be realized in practice. Filters 

are designed with an assumption that the elements of the filters are purely reactive. Filters are made 

of symmetrical T, or π section. T and π section can be considered as combination of unsymmetrical L 

sections as shown in Fig.9.2. 
 

 

Fig. 9.2 
 

The ladder structure is one of the commonest forms of filter network. A cascade 

connection of several T and π sections constitutes a ladder network. A common form of the ladder 

network is shown in Fig.9.3. 
 

Figure 9.3(a) represents a T section ladder network, whereas Fig.9.3 (b) represents the π section 

ladder network. It can be observed that both networks are identical except at the ends. 



 
 

Fig. 9.3 
 

 EQUATIONS OF FILTER NETWORKS 
 

The study of the behavior of any filter requires the calculation of its propagation constant У, 

attenuation α, phase shift β and its characteristic impedance Z 0 . 
 

T‐Network 
 

Consider a symmetrical T‐network as shown in Fig. 9.4. 
 

 

Fig.9.4 
 

If the image impedances at port 1‐1' and port 2‐2' are equal to each other ,the image 

impedance is then called the characteristic, or the iterative impedance, Z 0 .Thus, if the network in 

Fig.9.4 is terminated in Z 0 , its input impedance will also be Z 0 . The value of input impedance for 

the T‐network when it is terminated in Z 0 is given by 



 
 

 

The characteristic impedance of a symmetrical T‐section is 
 

(9.1) 
 

Z0T can also be expressed in terms of open circuit impedance Z0C and short circuit impedance 

Z SC of the T – network . From Fig. 9.4, the open circuit impedance Z 0C = Z1/2 + Z 2 and 
 

(9.2) 
 

Propagation Constant of T‐ Network 

By definitation the propagation constant У of the network in Fig.9.5 is given by У = log e I1/I2 



Writing the mesh equation for the 2nd mesh, we get 
 

 
 

Fig.9.5 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(9.3) 
 

The characteristic impedance of a T – network is given by 

  (9.4) 
 

Squaring Esq. 9.3 and 9.4 and subtracting Eq.9.4 from Eq.9.3, we get 



 
 
 
 

Rearranging the above equation, we have 
 

 

Dividing both sides by 2, we have 
 
 
 

(9.5) 
 

Still another expression may obtained for the complex propagation constant in terms of 

the hyperbolic tangent rather than hyperbolic cosine. 



 
(9.6) 

 

Dividing Eq.9.6 by Eq.9.5, We get 
 

 

 

Also from Eq. 9.2, 
 

  (9.7) 
 

π – Network 
 

Consider asymmetrical π – section shown in Fig. 9.6. When the network is terminated in Z 0 at port 2 

– 2 ‘, its input impedance is given by 
 

 

Fig.9.6 



 
 

(9.8) 
 

From Eq. 9.1 
 

(9.9) 



Z 0π can be expressed in terms of the open circuit impedance Z 0C and short circuit impedance 

Z SC of the π network shown in Fig.9.6 exclusive of the load Z 0 . 
 

From Fig.9.6, the input impedance at port 1‐ 1’ when port 2 – 2’ is open is given by 
 

Similarly, the input impedance at port 1 – 1’ when port 2 – 2’ is short circuit is given by 
 

 

Thus from Eq. 9.8 
 

(9.10) 
 

Propagation Constant of π – Network 

The propagation constant of a symmetrical π – section is the same as that for a symmetrical T – 

Section. 
 

 

CLASSIFICATION OF PASS BAND 
AND STOP BAND 

 

It is possible to verify the characteristics of filters from the propagation constant of the network. The 

propagation constant У, being a function of frequency, the pass band, stop band and the cut‐off 

point, i.e. the point of separation between the two bands, can be identified. For symmetrical T or π – 

section, the expression for propagation constant У in terms of the hyperbolic functions is given by 

Eqs 9.5 and 9.7 in section 9.3. From Eq.9.7, sin h У/2 = √(Z 1 /4Z2) . 
 

If Z1 and Z2 are both pure imaginary values, their ratio, and hence Z1 /4Z2 , will be a pure real 

number. Since Z1 and Z2 may be anywhere in the range from ‐jα to +jα , Z1 / 4Z2 may also have any 



real value between the infinite limits . Then sin h У/2 = √Z 1 /√4Z2 will also have infinite limits, but 

may be either real or imaginary depending upon whether Z1 / 4Z2 is positive or negative. 
 

We know that the propagation constant is a complex function У = α+jβ , the real part of the 

complex propagation constant α , is a measure of the change in magnitude of the current or voltage 

in the network ,known as the attenuation constant . β is a measure of the difference in phase 

between the input and output currents or voltages. Known as phase shift constant Therefore α and β 

take on different values depending upon the of Z1/ 4Z2 . From Eq.9.7, We have 
 

(9.11) 
 

Case A 
 

If Z1 and Z2 are the same type of reactances, then [Z1 / 4Z2 ] is real and equal to say α+x . 

The imaginary part of the Eq. 9.11 must be zero. 

 

(9.12) 
 

(9.13) 
 

α and β must satisfy both the above equations. 
 

Equation 9.12 can be satisfied if β/2 = 0 or nπ, where n = 0, 1, 2,….., then cos β/2 = 1 and sinh α/2= x 

=√( Z1 / 4Z2 ) 
 
 
 

That x should be always positive implies that 
 

(9.14) 



Since α ≠0, it indicates that the attenuation exists. 
 

Case B 
 

Consider the case of Z1 and Z2 being opposite type of reactances, i.e. Z1 / 4Z2 is negative , 

making √ Z1 / 4Z2 imaginary and equal to say Jx 
 

*The real part of the Eq.9.11 must be zero. 
 

(9.15) 
 

(9.16) 
 

Both the equations must be satisfied simultaneously by α and β. Equation 9.15 may be satisfied 

when α = 0, or when β = π. These conditions are considered separately hereunder 
 

(i) When α = 0; from Eq. 9.15, sinh α/2 =0.and from Eq.9.16 sin β/2 = x = √( Z1 / 4Z2) . But the 

sine can have a maximum value of 1. Therefore, the above solution is valid only for negative Z1 / 4Z2 

, and having maximum value of unity. It indicates the condition of pass band with zero attenuation 

and follows the condition as 
 

  (9.17) 
 

(ii) When β = π, from Eq.9.15, cos β/2 = 0. And from Eq.9.16, sin β/2 = ± 1; cosh α/2 = x = √ (Z1 / 4Z2) 

. 
 

Since cosh α/2 ≥ 1, this solution is valid for negative Z1 / 4Z2 ,and having magnitude 

greater than, or equal to unity. It indicates the condition of stop band since α ≠ 0. 
 

  (9.18) 

It can be observed that there are three limits for case A and B. Knowing the values of 

Z1 and Z2 , it is possible to determine the case to be applied to the filter. Z1 and Z2 are made of 

different types of reactances, or combinations of reactances, so that, as the frequency changes, a 

filter may pass from one case to another. Case A and (ii) in case B are attenuation bands, whereas (i) 

in case B is the transmission band. 



The frequency which separates the attenuation band from pass band or vice versa is 

called cut‐off frequency. The cut‐off frequency is denoted by fC , and is also termed as nominal 

frequency. Since Z0 is real in the pass band and imaginary in an attenuation band, fC is the frequency 

at which Z0 changes from being real to being imaginary. These frequencies occur at 
 

  9.18(a) 

  9.18 (b) 

The above conditions can be represented graphically, as in Fig.9.7. 
 

 

Fig. 9.7 
 

CHARACTERISTIC IMPEDANCE IN 
THE PASS AND STOP BANDS 

 

Referring to the characteristic impedance of a symmetrical T‐network, from Eq. 9.1 We have 
 

 

If Z1 and Z2 are purely reactive, let Z1 = jx1 and Z2 = jx2 , then 



 

(9.19) 
 

A pass band exists when x1 and x2 are of opposite reactances and 
 

 

Substituting these conditions in Eq. 9.19, we find that ZOT is positive and real. Now consider 

the stop band. A stop band exists when x1 and x2 are of the same type of reactances; then x1/4x2 > 0. 

Substituting these conditions in Eq. 9.19, we find that ZOT is purley imaginary in this attenuation 

region. Another stop band exists when x1 and x 2 are of the same type of reactances, but with x1/4x2 

< ‐1.Then from Eq.9.19, ZOT is again purly imaginary in the attenuation region. 
 

Thus, in a pass band if a network is terminated in a pure resistance RO(ZOT = RO), the input 

impedance is RO and the network transmits the power received from the source to the RO without 

any attenuation. In a stop band ZOT is reactive. Therefore, if the network is terminated in a pure 

reactance ( ZO = pure reactance), the input impedance is reactive, and cannot receive or transmit 

power. However, the network transmits voltage and current with 900 phase difference and with 

attenuation. It has already been shown that the characteristics impedance of a symmet rical π‐ 

section can be expressed in terms of T. Thus, from Eq.9.9,Z0π = Z1Z2/Z0T . 
 

Since Z1 and Z2 are purely reactive, Z0π is real, if ZOT is real and Z0x is imaginary if ZOT is 

imaginary. Thus the conditions developed for T – section are valid for π – sections. 
 

 CONSTANT –K LOW PASS FILTER 
 

A network, either T or π, is said to be of the constant – k type if Z1 and Z2 of the network satisfy the 

relation 
 

 

(9.20) 

Z1Z 2= k2 

 

Where Z1 and Z2 are impedances in the T and π sections as shown in Fig.9.8.Equation 9.20 states 

that Z1 and Z2 are inverse if their product is a constant, independent of frequency. K is a real 

constant that is the resistance. k is often termed as design impedance or nominal impedance of the 

constant k – filter. 



The constant k, T or π type filter is also known as the prototype because other more complex 

network can be derived from it. A prototype T and π – section are shown in 
 

 

Fig.9.8 
 

Fig.9.8 (a) and (b), where Z1 = jωL and Z2 = 1 / jωC . Hence Z1Z2 = L /C = k2 which is 

independent of frequency. 
 

(9.21) 
 

Since the product Z1 and Z2 is constant, the filter is a constant – k type. From Eq.9.18 (a) the 

cut‐off frequencies are Z1 /4Z2 = 0, 
 

(9.22) 
 

The pass band can be determined graphically. The reactances of Z1 and 4Z2 will vary with 

frequency as drawn in Fig.9.9.The cut‐off frequency at the intersection of the curves Z1 and ‐4z2 is 

indicated as fC . On the X – axis as Z1 = ‐4Z2 at cut‐off frequency, the pass band lies between the 

frequencies at which Z1 = 0, and Z1 = ‐ 4Z2 . 



 
 

Fig.9.9 
 

All the frequencies above fC lie in a stop or attenuation band , thus, the network is called a low‐ 

pass filter . We also have from Eq.9.7 that 
 

 

From Eq.9.22 
 

 

The plots of α and β for pass and stop bands are shown in Fig.9.10 



Thus, from Fig. 9.10, α = 0, β = 2 sinh‐1 (f /fC ) for f < fC 
 

α = 2cosh‐1 ( f / fC ); β = π for f > fC 
 

Fig .9.10 
 

The characteristics impedance can be calculated as follows 
 

(9.23) 
 

From Eq.9.23, ZOT is rael when f< fC , i.e.in the pass band at f = fC , ZOT ; and for f > fC , ZOT is 

imaginary in the attenuation band , rising to infinite reactance at infinite frequency . The variation of 

ZOT with frequency is shown in Fig.9.11 
 



Fig.9.11 
 

Similarly, the characteristics impedance of a π – network is given by 
 

(9.24) 
 

The variation of ZOπ with frequency is shown in Fig.9.11 . For f <fC , ZOπ is real ; at f = fC , ZOT is 

infinite , and for f > fC , ZOπ is imaginary . A low pass filter can be designed from the specifications of 

cut‐off frequency and load resistance. 
 

At cut‐off frequency, Z1 = ‐ 4Z2 
 

 

Example 9.1. 
 

Design a low pass filter (both π and T – sections ) having a cut‐off frequency of 2 kHz 

to operate with a terminated load resistance of 500 Ω . 

solution. It is given that k = √(L /C) =500 Ω , and fC = 2000 Hz 

we know that L = k/πfC = 500/3.14 x 2000 = 79.6 mH 

C = 1/πfCk = 1/3.14.2000.500 = 0.318 μF 



The T and π – sections of this filter are shown in Fig.9.12 (a) and (b) respectively. 

 

Fig.9.12 
 

 CONSTANT K – HIGH PASS FILTER 
 

Constant K – high pass filter can be obtained by changing the positions of series and shunt arms of 

the networks shown in Fig.9.8.The prototype high pass filters are shown in Fig.9.13,where Z1 = ‐j/ω C 

and Z2 = jωL . 
 

 

Fig.9.13 
 

Again, it can be observed that the product of Z1 and Z2 is independent of frequency, and the 

filter design obtained will be of the constant k type .Thus, Z1Z2 are given by 
 

 

The cut‐off frequencies are given by Z1 = 0 and Z2 = ‐4Z2 . 
 

Z1 = 0 indicates j/ωC = 0 , or ω → α 



From Z1 = ‐ 4Z2 
 

‐j/ωC = ‐ 4 jωL 
 

ω2LC = 1/4 
 

(9.25) 
 
 
 

The reactances of Z1 and Z2 are sketched as functions of frequency as shown in Fig.9.14. 
 

Fig.9.14 
 

As seen from Fig.9.14, the filter transmits all frequencies between f = fC and f = α. The point fC 

from the graph is a point at which Z1= ‐ 4Z2 . 

From Eq.9.7, 

 
 

From Eq. 9.25, 



 
 

 

In the pass band, ‐1< Z1/4Z2 < 0 , α = 0 or the region in which fC / f < 1 is a pass band β = 2 sin ‐1 ( fC/ f 

) 
 

In the attenuation band Z1/4Z2< ‐1,i.e.fC / f > 1 
 

α = 2 cosh‐1 [Z1 / 4Z2] 
 

= 2 cos‐1(fC / f ) ; β = ‐ π 
 

 

Fig.9.15 
 

The plots of α and β for pass and stop bands of a high pass filter network are shown in Fig.9.15. 
 

A high pass filter may be designed similar to the low pass filter by choosing a resistive load 

r equal to the constant k , such that R = k = √L/C 



 
 

The characteristic impedance can be calculated using the relation 
 
 
 

 
 
 

Similarly, the characteristic impedance of a π – network is given by 
 

(9.26) 
 

Fig.9.16 
 

The plot of characteristic impedances with respect to frequency is shown in Fig.9.16. 
 

Example 9.2. 



Design a high pass filter having a cut‐off frequency of 1 kHz with a load resistance 

of 600 Ω . 
 

Solution. It is given that R L = K =600 Ω and fC =1000 Hz 

L = K /4πfc = 600 /4 x π x 1000 = 47.74 mH 

C = 1/4πkfC = 1/4π x 600 x1000 = 0.133 μF 
 

The T and π – sections of the filter are shown in Fig.9.17. 
 

 

Fig.9.17 
 

 m – DERIVED T – SECTION FILTER 
 

It is clear from Figs.9.10 and 9.15 that the attenuation is not sharp in the stop band for k‐type filters. 

The characteristic impedance, Z0 is a function of frequency and varies widely in the transmission 

band. Attenuation can be increased in the stop band by using ladder section, i.e.by connecting two 

or more identical sections. In order to join the filter sections, it would be necessary that their 

characteristic impedances be equal to each other at all frequencies. If their characteristic 

impedances match at all frequencies, they would also have the same pass band . However , 

cascading is not a proper solution from a practical point of view . 
 

This is because practical elements have a certain resistance, which gives rise to 

attenuation in the pass band also. Therefore, any attempt to increase attenuation in stop band by 

cascading also results in an increase of ‘α’ in the pass band .If the constant k section is regarded as 

the prototype, it is possible to design a filter to have rapid attenuation in the stop band , and the 

same characteristic impedance as the prototype at all frequencies . Such a filter is called m – derived 

filter. Suppose a prototype T – network shown in Fig.9.18(a) has the series arm modified as shown in 

Fig.9.18 (b) , where m is a constant . Equating the characteristic impedance of the networks in 

Fig.9.18, we have 



2 

 
 

 
 

ZOT = ZOT 
,
 

Fig.9.18 

 

Where ZOT ,is the characteristic impedance of the modified (m – derived) T – network. 
 

 

(9.27) 
 

It appears that the shunt arm Z ‘ consists of two impedances in series as shown in Fig.9.19. 
 

Fig.9.19 



From Eq.9.27, 1 – m2/4m should be positive to realize the impedance Z ‘2 physically , 

i.e.0<m<1 . Thus m – derived section can be obtained from the prototype by modifying its series and 

shunt arms .The same technique can be applied to π section network. Suppose a prototype π – 

network shown in Fig. 9.20 (a) has the shunt arm modified as shown in Fig. 9.20(b). 
 

 
 

 

 
Z0π = Z ‘ 

 

Fig.9.20 

 

Where Z ‘0π is the characteristic impedance of the modified (m – derived) π – network. 
 

0π 



Squaring and cross multiplying the above equation results as under. 
 

(9.28) 
 

It appears that the series arm of the m – derived π section is a parallel combination of mZ1 and 

4mZ2 /1 – m2 . The derived m section is shown in Fig.9.21. 

m – Derived Low Pass Filter 
 

In Fig.9.22 , both m – derived low pass T and π filter sections are shown. For the T –section shown in 

Fig.9.22(a) , the shunt arm is to be chosen so that it is resonant at some frequency fα above cut‐off 

frequency fC . 
 

If the shunt arm is series resonant ,its impedance will be minimum or zero .Therefore , the 

output is zero and will correspond to infinite attenuation at this particular frequency . Thus, at fα 
 

1/mωrC = 1 – m2/4m ωr L , where ωr is the resonant frequency 



 
 

Fig.9.21 
 

 

Fig.9.22 
 

Since the cut‐off frequency for the low pass filter is fc = 1/π√LC 
 

(9.29) 
 

(9.30) 



If a sharp cut‐off is desired,fα should be near to fc . From Eq.9.29,it is clear that for the 

smaller the value of m,fα comes close to fc .Equation 9.30 shows that if fc and fα are specified , the 

necessary value of m may then be calculated. Similarly, for m – derived π section, the inductance 

and capacitance in the series arm constitute a resonant circuit . Thus , at fα a frequency corresponds 

to infinite attenuation, i.e. at fα 
 

(9.31) 
 

Thus for both m – derived low pass networks for a positive value of m(0 < m < 1) , fα > fc . 

Equations 9.30 or 9.31 can be used to choose the value of m,  knowing fc and fr . After the value of 

m is evaluated, the elements of the T or π – networks can be found from Fig.9.22. The variation of 

attenuation for a low pass m – derived section can be verified from α = 2 cosh‐1 √Z1/4Z2 for fc< f < fα . 

For Z1 = jωL and Z2 = ‐j/ωC  for the prototype. 
 

 

 

Figure 9.23 shows the variation of α , β and Z0 with respect to frequency for an m – derived 

low pass filter. 



 
Fig.9.23 

 

Example 9.3 
 

Design a m – derived low pass filter having cut‐off frequency of 1kHz, design 

impedance of 400 Ω, and the resonant frequency 1100 Hz. 
 

Solution. k = 400 Ω, fC =1000 Hz ; fα =1100 Hz 

From Eq.9.30 

 
 

Let us design the values of L and C for a low pass , K – type filter (prototype filter). 

Thus, 

 
 

The elements of m – derived low pass sections can be obtained with reference to Fig.9.22. 

Thus the T‐section elements are 



 
 

 

The m –derived LP filter sections are shown in Fig.9.24. 
 

 

Fig.9.24 
 

m – Derived High Pass Filter 
 

In Fig.9.25 both m – derived high pass T and π – section are shown. 
 

If the shunt arm in T – section is series resonant, it offers minimum or zero 

impedance.Therefore, the output is zero and, thus, at resonance frequency or the frequency 

corresponds to infinite attenuation. 



 
 

 

Fig.9.25 
 

 

From Eq. 9.25, the cut – off frequency fC of a high pass prototype filter is given by 
 

(9.32) 
 

(9.33) 
 

Similarly,for the m – derived π – section , the resonant circuit is constituted by the series 

arm inductance and capacitance . Thus , at fα 



 
 

 

Fig.9.26 
 

Thus the frequency corresponding to infinite attenuation is the same for both sections. 

Equation 9.33 may be used to determine m for a given fα and fC . The elements of the m – 

derived high pass T or π – sections can be found from Fig.9.25. The variation of α, β and Z0 with 

frequency is shown in Fig. 9.26. 
 

Fig.9.26 



Example 9.4. 
 

Design a m‐derived high pass filter with a cut‐off frequency of 10kHz; design 

impedance of 5Ω and m = 0.4. 
 

Solution .For the prototype high pass filter, 
 

 

The elements of m‐derived high pass sections can be obtained with reference to Fig.9.25.Thus, 

the T‐section elements are 
 

 

T and π sections of the m –derived high pass filter are shown in Fig.9.27. 
 



Fig.9.27 
 

 BAND PASS FILTER 
 

As already explained in Section 9.1 , a band pass filter is one which attenuates all frequencies below 

a lower cut‐off frequency f1 and above an upper cut‐off frequency f2 . Frequencies lying between 

f1 and f2 comprise the pass band ,and are transmitted with zero attenuation .A band pass filter may 

be obtained by using a low pass filter followed by a high pass filter in which the cut‐off frequency of 

the LP filter is above the cut‐off frequency of the HP filter , the overlap thus allowing only a band of 

frequencies to pass . This is not economical in practice; it is more economical to combine the low 

and high pass functions into a single filter section . 
 

Consider the circuit in Fig.9.28, each arm has a resonant circuit with same resonant 

frequency, i.e. the resonant frequency of the series arm and the resonant frequency of the shunt 

arm are made equal to obtain the band pass characteristic. 
 

 

Fig.9.28 
 

For this condition of equal resonant frequencies. 
 

(9.34) 



 
(9.35) 

 

(9.36) 
 

From Eq.9.36 
 

 

Where k is constant. Thus, the filter is a constant k – type .Therefore, for a constant k – type in the 

pass band. 
 



i.e. the value of Z1 at lower cut‐off frequency is equal to the negative of the value of Z1 at the upper 

cut‐off frequency . 
 

(9.37) 
 

From Eq.9.34, L1C1 = 1 /ω0
2 

 

Hence Eq.9.37 may be written as 
 

(9.38) 
 



Fig.9.29 
 

Thus, the resonant frequency is the geometric mean of the cut‐off frequencies. The 

variation of the reactances with respect to frequency is shown in Fig.9.29. 
 

If the filter is terminated in a load resistance R = K , then at the lower cut‐off frequency. 
 

 

(9.39) 
 

(9.40) 



 

(9.41) 
 

(9.42) 
 

Equations 9.39 through 9.42 are the design equations of a prototype band pass filter. T he 

variation of α , β with respect to frequency is shown in Fig.9.30 . 
 

Fig.9.30 
 

Example 9.5. 
 

Design k – type band pass filter having a design impedance of 500 Ω and cut‐off 

frequencies 1 kHz and 10 kHz. 
 

Solution . 
 

k = 500 Ω; f1 = 1000 Hz; f2 = 10000 Hz 
 

From Eq.9.40, 
 

 

From Eq.9.39, 
 



From Eq.9.41, 
 

 

From Eq.9.42, 
 

 

Each of the two series arms of the constant k, T – section filter is given by 
 

 

 BAND ELIMINATION FILTER 
 

A band elimination filter is one which passes without attenuation all frequencies less than the lower 

cut‐off frequency f1 , and greater than the upper cut‐off frequency f2 . Frequencies lying between f1 

and f2 are attenuated. It is also known as band stop filter. Therefore, a band stop filter can be 

realized by connecting a low pass filter in parallel with a high pass section, in which the cut‐off 

frequency of low pass filter is below that of a high pass filter. The configurations of T and π constant 

k band stop sections are shown in Fig.9.31. The band elimination filter is designed in the same 

manner as is the band pass filter. 



 
 

Fig.9.31 
 

As for the band pass filter, the series and shunt arms are chosen to resonate at the same 

frequency ω 0 . Therefore, from Fig.9.31 (a) , for the condition of equal resonant frequencies 
 

(9.43) 
 

(9.44) 
 

(9.45) 
 

(9.46) 
 

(9.47) 
 

At cut‐off frequencies, Z1 = ‐ 4Z2 

Multiplying both sides with Z2 , we get 



 
(9.48) 

 

If the load is terminated in a load resistance, R = k , then at lower cut‐off frequency 
 

 

From Eq.9.44, 
 

 

(9.49) 
 

From Eq.9.44, 
 

(9.50) 



Also from Eq. 9.46, 
 

(9.51) 
 

(9.52) 
 

 

 

Fig.9.32 
 

The variation of reactances with respect to frequency is shown in Fig.9.32. Equation 9.49 

through Eq.9.52 is the design equations of a prototype band elimination filter. The variation of α ,β 

with respect to frequency is shown in Fig.9.33 . 



 
 

Fig.9.33 
 

Example 9.6. 
 

Design a band elimination filter having a design impedance of 600 Ω and cut‐off 

frequencies f1 = 2 kHz and f2 = 6 kHz. 
 

Solution. (f2 – f1) = 4 kHz 
 
 
 

Making use of the Eqs.9.49 through 9.52 in Section 9.10, we have 



 


